EVOLUTION-MANAGER
Edit File: PJ_aea.c
/****************************************************************************** * Project: PROJ.4 * Purpose: Implementation of the aea (Albers Equal Area) projection. * and the leac (Lambert Equal Area Conic) projection * Author: Gerald Evenden (1995) * Thomas Knudsen (2016) - revise/add regression tests * ****************************************************************************** * Copyright (c) 1995, Gerald Evenden * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. *****************************************************************************/ #define PJ_LIB__ #include "proj.h" #include <errno.h> #include "projects.h" #include "proj_math.h" # define EPS10 1.e-10 # define TOL7 1.e-7 PROJ_HEAD(aea, "Albers Equal Area") "\n\tConic Sph&Ell\n\tlat_1= lat_2="; PROJ_HEAD(leac, "Lambert Equal Area Conic") "\n\tConic, Sph&Ell\n\tlat_1= south"; /* determine latitude angle phi-1 */ # define N_ITER 15 # define EPSILON 1.0e-7 # define TOL 1.0e-10 static double phi1_(double qs, double Te, double Tone_es) { int i; double Phi, sinpi, cospi, con, com, dphi; Phi = asin (.5 * qs); if (Te < EPSILON) return( Phi ); i = N_ITER; do { sinpi = sin (Phi); cospi = cos (Phi); con = Te * sinpi; com = 1. - con * con; dphi = .5 * com * com / cospi * (qs / Tone_es - sinpi / com + .5 / Te * log ((1. - con) / (1. + con))); Phi += dphi; } while (fabs(dphi) > TOL && --i); return( i ? Phi : HUGE_VAL ); } struct pj_opaque { double ec; double n; double c; double dd; double n2; double rho0; double rho; double phi1; double phi2; double *en; int ellips; }; static void *destructor (PJ *P, int errlev) { /* Destructor */ if (0==P) return 0; if (0==P->opaque) return pj_default_destructor (P, errlev); pj_dealloc (P->opaque->en); return pj_default_destructor (P, errlev); } static XY e_forward (LP lp, PJ *P) { /* Ellipsoid/spheroid, forward */ XY xy = {0.0,0.0}; struct pj_opaque *Q = P->opaque; Q->rho = Q->c - (Q->ellips ? Q->n * pj_qsfn(sin(lp.phi), P->e, P->one_es) : Q->n2 * sin(lp.phi));; if (Q->rho < 0.) { proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION); return xy; } Q->rho = Q->dd * sqrt(Q->rho); xy.x = Q->rho * sin( lp.lam *= Q->n ); xy.y = Q->rho0 - Q->rho * cos(lp.lam); return xy; } static LP e_inverse (XY xy, PJ *P) { /* Ellipsoid/spheroid, inverse */ LP lp = {0.0,0.0}; struct pj_opaque *Q = P->opaque; if( (Q->rho = hypot(xy.x, xy.y = Q->rho0 - xy.y)) != 0.0 ) { if (Q->n < 0.) { Q->rho = -Q->rho; xy.x = -xy.x; xy.y = -xy.y; } lp.phi = Q->rho / Q->dd; if (Q->ellips) { lp.phi = (Q->c - lp.phi * lp.phi) / Q->n; if (fabs(Q->ec - fabs(lp.phi)) > TOL7) { if ((lp.phi = phi1_(lp.phi, P->e, P->one_es)) == HUGE_VAL) { proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION); return lp; } } else lp.phi = lp.phi < 0. ? -M_HALFPI : M_HALFPI; } else if (fabs(lp.phi = (Q->c - lp.phi * lp.phi) / Q->n2) <= 1.) lp.phi = asin(lp.phi); else lp.phi = lp.phi < 0. ? -M_HALFPI : M_HALFPI; lp.lam = atan2(xy.x, xy.y) / Q->n; } else { lp.lam = 0.; lp.phi = Q->n > 0. ? M_HALFPI : - M_HALFPI; } return lp; } static PJ *setup(PJ *P) { double cosphi, sinphi; int secant; struct pj_opaque *Q = P->opaque; P->inv = e_inverse; P->fwd = e_forward; if (fabs(Q->phi1 + Q->phi2) < EPS10) return destructor(P, PJD_ERR_CONIC_LAT_EQUAL); Q->n = sinphi = sin(Q->phi1); cosphi = cos(Q->phi1); secant = fabs(Q->phi1 - Q->phi2) >= EPS10; if( (Q->ellips = (P->es > 0.))) { double ml1, m1; if (!(Q->en = pj_enfn(P->es))) return destructor(P, 0); m1 = pj_msfn(sinphi, cosphi, P->es); ml1 = pj_qsfn(sinphi, P->e, P->one_es); if (secant) { /* secant cone */ double ml2, m2; sinphi = sin(Q->phi2); cosphi = cos(Q->phi2); m2 = pj_msfn(sinphi, cosphi, P->es); ml2 = pj_qsfn(sinphi, P->e, P->one_es); if (ml2 == ml1) return destructor(P, 0); Q->n = (m1 * m1 - m2 * m2) / (ml2 - ml1); } Q->ec = 1. - .5 * P->one_es * log((1. - P->e) / (1. + P->e)) / P->e; Q->c = m1 * m1 + Q->n * ml1; Q->dd = 1. / Q->n; Q->rho0 = Q->dd * sqrt(Q->c - Q->n * pj_qsfn(sin(P->phi0), P->e, P->one_es)); } else { if (secant) Q->n = .5 * (Q->n + sin(Q->phi2)); Q->n2 = Q->n + Q->n; Q->c = cosphi * cosphi + Q->n2 * sinphi; Q->dd = 1. / Q->n; Q->rho0 = Q->dd * sqrt(Q->c - Q->n2 * sin(P->phi0)); } return P; } PJ *PROJECTION(aea) { struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque)); if (0==Q) return pj_default_destructor (P, ENOMEM); P->opaque = Q; P->destructor = destructor; Q->phi1 = pj_param(P->ctx, P->params, "rlat_1").f; Q->phi2 = pj_param(P->ctx, P->params, "rlat_2").f; return setup(P); } PJ *PROJECTION(leac) { struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque)); if (0==Q) return pj_default_destructor (P, ENOMEM); P->opaque = Q; P->destructor = destructor; Q->phi2 = pj_param(P->ctx, P->params, "rlat_1").f; Q->phi1 = pj_param(P->ctx, P->params, "bsouth").i ? - M_HALFPI: M_HALFPI; return setup(P); }