EVOLUTION-MANAGER
Edit File: generic_utils.py
"""Python utilities required by Keras.""" import inspect import sys from tensorflow.keras.utils import CustomObjectScope from tensorflow.keras.utils import custom_object_scope from tensorflow.keras.utils import get_custom_objects from tensorflow.keras.utils import serialize_keras_object from tensorflow.keras.utils import deserialize_keras_object from tensorflow.keras.utils import Progbar def to_list(x, allow_tuple=False): """Normalizes a list/tensor into a list. If a tensor is passed, we return a list of size 1 containing the tensor. # Arguments x: target object to be normalized. allow_tuple: If False and x is a tuple, it will be converted into a list with a single element (the tuple). Else converts the tuple to a list. # Returns A list. """ if isinstance(x, list): return x if allow_tuple and isinstance(x, tuple): return list(x) return [x] def unpack_singleton(x): """Gets the first element if the iterable has only one value. Otherwise return the iterable. # Argument x: A list or tuple. # Returns The same iterable or the first element. """ if len(x) == 1: return x[0] return x def object_list_uid(object_list): object_list = to_list(object_list) return ', '.join((str(abs(id(x))) for x in object_list)) def is_all_none(iterable_or_element): iterable = to_list(iterable_or_element, allow_tuple=True) for element in iterable: if element is not None: return False return True def slice_arrays(arrays, start=None, stop=None): """Slices an array or list of arrays. This takes an array-like, or a list of array-likes, and outputs: - arrays[start:stop] if `arrays` is an array-like - [x[start:stop] for x in arrays] if `arrays` is a list Can also work on list/array of indices: `_slice_arrays(x, indices)` # Arguments arrays: Single array or list of arrays. start: can be an integer index (start index) or a list/array of indices stop: integer (stop index); should be None if `start` was a list. # Returns A slice of the array(s). """ if arrays is None: return [None] elif isinstance(arrays, list): if hasattr(start, '__len__'): # hdf5 datasets only support list objects as indices if hasattr(start, 'shape'): start = start.tolist() return [None if x is None else x[start] for x in arrays] else: return [None if x is None else x[start:stop] for x in arrays] else: if hasattr(start, '__len__'): if hasattr(start, 'shape'): start = start.tolist() return arrays[start] elif hasattr(start, '__getitem__'): return arrays[start:stop] else: return [None] def transpose_shape(shape, target_format, spatial_axes): """Converts a tuple or a list to the correct `data_format`. It does so by switching the positions of its elements. # Arguments shape: Tuple or list, often representing shape, corresponding to `'channels_last'`. target_format: A string, either `'channels_first'` or `'channels_last'`. spatial_axes: A tuple of integers. Correspond to the indexes of the spatial axes. For example, if you pass a shape representing (batch_size, timesteps, rows, cols, channels), then `spatial_axes=(2, 3)`. # Returns A tuple or list, with the elements permuted according to `target_format`. # Example ```python >>> from keras.utils.generic_utils import transpose_shape >>> transpose_shape((16, 128, 128, 32),'channels_first', spatial_axes=(1, 2)) (16, 32, 128, 128) >>> transpose_shape((16, 128, 128, 32), 'channels_last', spatial_axes=(1, 2)) (16, 128, 128, 32) >>> transpose_shape((128, 128, 32), 'channels_first', spatial_axes=(0, 1)) (32, 128, 128) ``` # Raises ValueError: if `value` or the global `data_format` invalid. """ if target_format == 'channels_first': new_values = shape[:spatial_axes[0]] new_values += (shape[-1],) new_values += tuple(shape[x] for x in spatial_axes) if isinstance(shape, list): return list(new_values) return new_values elif target_format == 'channels_last': return shape else: raise ValueError('The `data_format` argument must be one of ' '"channels_first", "channels_last". Received: ' + str(target_format)) def check_for_unexpected_keys(name, input_dict, expected_values): unknown = set(input_dict.keys()).difference(expected_values) if unknown: raise ValueError('Unknown entries in {} dictionary: {}. Only expected ' 'following keys: {}'.format(name, list(unknown), expected_values)) def has_arg(fn, name, accept_all=False): """Checks if a callable accepts a given keyword argument. For Python 2, checks if there is an argument with the given name. For Python 3, checks if there is an argument with the given name, and also whether this argument can be called with a keyword (i.e. if it is not a positional-only argument). # Arguments fn: Callable to inspect. name: Check if `fn` can be called with `name` as a keyword argument. accept_all: What to return if there is no parameter called `name` but the function accepts a `**kwargs` argument. # Returns bool, whether `fn` accepts a `name` keyword argument. """ if sys.version_info < (3,): arg_spec = inspect.getargspec(fn) if accept_all and arg_spec.keywords is not None: return True return (name in arg_spec.args) elif sys.version_info < (3, 3): arg_spec = inspect.getfullargspec(fn) if accept_all and arg_spec.varkw is not None: return True return (name in arg_spec.args or name in arg_spec.kwonlyargs) else: signature = inspect.signature(fn) parameter = signature.parameters.get(name) if parameter is None: if accept_all: for param in signature.parameters.values(): if param.kind == inspect.Parameter.VAR_KEYWORD: return True return False return (parameter.kind in (inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY))