EVOLUTION-MANAGER
Edit File: image.py
""" Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import division import numpy as np import cv2 from PIL import Image from .transform import change_transform_origin def read_image_bgr(path): """ Read an image in BGR format. Args path: Path to the image. """ # We deliberately don't use cv2.imread here, since it gives no feedback on errors while reading the image. image = np.ascontiguousarray(Image.open(path).convert('RGB')) return image[:, :, ::-1] def preprocess_image(x, mode='caffe'): """ Preprocess an image by subtracting the ImageNet mean. Args x: np.array of shape (None, None, 3) or (3, None, None). mode: One of "caffe" or "tf". - caffe: will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. Returns The input with the ImageNet mean subtracted. """ # mostly identical to "https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py" # except for converting RGB -> BGR since we assume BGR already # covert always to float32 to keep compatibility with opencv x = x.astype(np.float32) if mode == 'tf': x /= 127.5 x -= 1. elif mode == 'caffe': x -= [103.939, 116.779, 123.68] return x def adjust_transform_for_image(transform, image, relative_translation): """ Adjust a transformation for a specific image. The translation of the matrix will be scaled with the size of the image. The linear part of the transformation will adjusted so that the origin of the transformation will be at the center of the image. """ height, width, channels = image.shape result = transform # Scale the translation with the image size if specified. if relative_translation: result[0:2, 2] *= [width, height] # Move the origin of transformation. result = change_transform_origin(transform, (0.5 * width, 0.5 * height)) return result class TransformParameters: """ Struct holding parameters determining how to apply a transformation to an image. Args fill_mode: One of: 'constant', 'nearest', 'reflect', 'wrap' interpolation: One of: 'nearest', 'linear', 'cubic', 'area', 'lanczos4' cval: Fill value to use with fill_mode='constant' relative_translation: If true (the default), interpret translation as a factor of the image size. If false, interpret it as absolute pixels. """ def __init__( self, fill_mode = 'nearest', interpolation = 'linear', cval = 0, relative_translation = True, ): self.fill_mode = fill_mode self.cval = cval self.interpolation = interpolation self.relative_translation = relative_translation def cvBorderMode(self): if self.fill_mode == 'constant': return cv2.BORDER_CONSTANT if self.fill_mode == 'nearest': return cv2.BORDER_REPLICATE if self.fill_mode == 'reflect': return cv2.BORDER_REFLECT_101 if self.fill_mode == 'wrap': return cv2.BORDER_WRAP def cvInterpolation(self): if self.interpolation == 'nearest': return cv2.INTER_NEAREST if self.interpolation == 'linear': return cv2.INTER_LINEAR if self.interpolation == 'cubic': return cv2.INTER_CUBIC if self.interpolation == 'area': return cv2.INTER_AREA if self.interpolation == 'lanczos4': return cv2.INTER_LANCZOS4 def apply_transform(matrix, image, params): """ Apply a transformation to an image. The origin of transformation is at the top left corner of the image. The matrix is interpreted such that a point (x, y) on the original image is moved to transform * (x, y) in the generated image. Mathematically speaking, that means that the matrix is a transformation from the transformed image space to the original image space. Args matrix: A homogeneous 3 by 3 matrix holding representing the transformation to apply. image: The image to transform. params: The transform parameters (see TransformParameters) """ output = cv2.warpAffine( image, matrix[:2, :], dsize = (image.shape[1], image.shape[0]), flags = params.cvInterpolation(), borderMode = params.cvBorderMode(), borderValue = params.cval, ) return output def compute_resize_scale(image_shape, min_side=800, max_side=1333): """ Compute an image scale such that the image size is constrained to min_side and max_side. Args min_side: The image's min side will be equal to min_side after resizing. max_side: If after resizing the image's max side is above max_side, resize until the max side is equal to max_side. Returns A resizing scale. """ (rows, cols, _) = image_shape smallest_side = min(rows, cols) # rescale the image so the smallest side is min_side scale = min_side / smallest_side # check if the largest side is now greater than max_side, which can happen # when images have a large aspect ratio largest_side = max(rows, cols) if largest_side * scale > max_side: scale = max_side / largest_side return scale def resize_image(img, min_side=800, max_side=1333): """ Resize an image such that the size is constrained to min_side and max_side. Args min_side: The image's min side will be equal to min_side after resizing. max_side: If after resizing the image's max side is above max_side, resize until the max side is equal to max_side. Returns A resized image. """ # compute scale to resize the image scale = compute_resize_scale(img.shape, min_side=min_side, max_side=max_side) # resize the image with the computed scale img = cv2.resize(img, None, fx=scale, fy=scale) return img, scale def _uniform(val_range): """ Uniformly sample from the given range. Args val_range: A pair of lower and upper bound. """ return np.random.uniform(val_range[0], val_range[1]) def _check_range(val_range, min_val=None, max_val=None): """ Check whether the range is a valid range. Args val_range: A pair of lower and upper bound. min_val: Minimal value for the lower bound. max_val: Maximal value for the upper bound. """ if val_range[0] > val_range[1]: raise ValueError('interval lower bound > upper bound') if min_val is not None and val_range[0] < min_val: raise ValueError('invalid interval lower bound') if max_val is not None and val_range[1] > max_val: raise ValueError('invalid interval upper bound') def _clip(image): """ Clip and convert an image to np.uint8. Args image: Image to clip. """ return np.clip(image, 0, 255).astype(np.uint8) class VisualEffect: """ Struct holding parameters and applying image color transformation. Args contrast_factor: A factor for adjusting contrast. Should be between 0 and 3. brightness_delta: Brightness offset between -1 and 1 added to the pixel values. hue_delta: Hue offset between -1 and 1 added to the hue channel. saturation_factor: A factor multiplying the saturation values of each pixel. """ def __init__( self, contrast_factor, brightness_delta, hue_delta, saturation_factor, ): self.contrast_factor = contrast_factor self.brightness_delta = brightness_delta self.hue_delta = hue_delta self.saturation_factor = saturation_factor def __call__(self, image): """ Apply a visual effect on the image. Args image: Image to adjust """ if self.contrast_factor: image = adjust_contrast(image, self.contrast_factor) if self.brightness_delta: image = adjust_brightness(image, self.brightness_delta) if self.hue_delta or self.saturation_factor: image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) if self.hue_delta: image = adjust_hue(image, self.hue_delta) if self.saturation_factor: image = adjust_saturation(image, self.saturation_factor) image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) return image def random_visual_effect_generator( contrast_range=(0.9, 1.1), brightness_range=(-.1, .1), hue_range=(-0.05, 0.05), saturation_range=(0.95, 1.05) ): """ Generate visual effect parameters uniformly sampled from the given intervals. Args contrast_factor: A factor interval for adjusting contrast. Should be between 0 and 3. brightness_delta: An interval between -1 and 1 for the amount added to the pixels. hue_delta: An interval between -1 and 1 for the amount added to the hue channel. The values are rotated if they exceed 180. saturation_factor: An interval for the factor multiplying the saturation values of each pixel. """ _check_range(contrast_range, 0) _check_range(brightness_range, -1, 1) _check_range(hue_range, -1, 1) _check_range(saturation_range, 0) def _generate(): while True: yield VisualEffect( contrast_factor=_uniform(contrast_range), brightness_delta=_uniform(brightness_range), hue_delta=_uniform(hue_range), saturation_factor=_uniform(saturation_range), ) return _generate() def adjust_contrast(image, factor): """ Adjust contrast of an image. Args image: Image to adjust. factor: A factor for adjusting contrast. """ mean = image.mean(axis=0).mean(axis=0) return _clip((image - mean) * factor + mean) def adjust_brightness(image, delta): """ Adjust brightness of an image Args image: Image to adjust. delta: Brightness offset between -1 and 1 added to the pixel values. """ return _clip(image + delta * 255) def adjust_hue(image, delta): """ Adjust hue of an image. Args image: Image to adjust. delta: An interval between -1 and 1 for the amount added to the hue channel. The values are rotated if they exceed 180. """ image[..., 0] = np.mod(image[..., 0] + delta * 180, 180) return image def adjust_saturation(image, factor): """ Adjust saturation of an image. Args image: Image to adjust. factor: An interval for the factor multiplying the saturation values of each pixel. """ image[..., 1] = np.clip(image[..., 1] * factor, 0 , 255) return image