EVOLUTION-MANAGER
Edit File: evaluate.py
#!/usr/bin/env python """ Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import os import sys # Allow relative imports when being executed as script. if __name__ == "__main__" and __package__ is None: sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) import keras_retinanet.bin # noqa: F401 __package__ = "keras_retinanet.bin" # Change these to absolute imports if you copy this script outside the keras_retinanet package. from .. import models from ..preprocessing.csv_generator import CSVGenerator from ..preprocessing.pascal_voc import PascalVocGenerator from ..utils.anchors import make_shapes_callback from ..utils.config import read_config_file, parse_anchor_parameters, parse_pyramid_levels from ..utils.eval import evaluate from ..utils.gpu import setup_gpu from ..utils.tf_version import check_tf_version def create_generator(args, preprocess_image): """ Create generators for evaluation. """ common_args = { 'config' : args.config, 'image_min_side' : args.image_min_side, 'image_max_side' : args.image_max_side, 'no_resize' : args.no_resize, 'preprocess_image' : preprocess_image, 'group_method' : args.group_method } if args.dataset_type == 'coco': # import here to prevent unnecessary dependency on cocoapi from ..preprocessing.coco import CocoGenerator validation_generator = CocoGenerator( args.coco_path, 'val2017', shuffle_groups=False, **common_args ) elif args.dataset_type == 'pascal': validation_generator = PascalVocGenerator( args.pascal_path, 'test', image_extension=args.image_extension, shuffle_groups=False, **common_args ) elif args.dataset_type == 'csv': validation_generator = CSVGenerator( args.annotations, args.classes, shuffle_groups=False, **common_args ) else: raise ValueError('Invalid data type received: {}'.format(args.dataset_type)) return validation_generator def parse_args(args): """ Parse the arguments. """ parser = argparse.ArgumentParser(description='Evaluation script for a RetinaNet network.') subparsers = parser.add_subparsers(help='Arguments for specific dataset types.', dest='dataset_type') subparsers.required = True coco_parser = subparsers.add_parser('coco') coco_parser.add_argument('coco_path', help='Path to dataset directory (ie. /tmp/COCO).') pascal_parser = subparsers.add_parser('pascal') pascal_parser.add_argument('pascal_path', help='Path to dataset directory (ie. /tmp/VOCdevkit).') pascal_parser.add_argument('--image-extension', help='Declares the dataset images\' extension.', default='.jpg') csv_parser = subparsers.add_parser('csv') csv_parser.add_argument('annotations', help='Path to CSV file containing annotations for evaluation.') csv_parser.add_argument('classes', help='Path to a CSV file containing class label mapping.') parser.add_argument('model', help='Path to RetinaNet model.') parser.add_argument('--convert-model', help='Convert the model to an inference model (ie. the input is a training model).', action='store_true') parser.add_argument('--backbone', help='The backbone of the model.', default='resnet50') parser.add_argument('--gpu', help='Id of the GPU to use (as reported by nvidia-smi).') parser.add_argument('--score-threshold', help='Threshold on score to filter detections with (defaults to 0.05).', default=0.05, type=float) parser.add_argument('--iou-threshold', help='IoU Threshold to count for a positive detection (defaults to 0.5).', default=0.5, type=float) parser.add_argument('--max-detections', help='Max Detections per image (defaults to 100).', default=100, type=int) parser.add_argument('--save-path', help='Path for saving images with detections (doesn\'t work for COCO).') parser.add_argument('--image-min-side', help='Rescale the image so the smallest side is min_side.', type=int, default=800) parser.add_argument('--image-max-side', help='Rescale the image if the largest side is larger than max_side.', type=int, default=1333) parser.add_argument('--no-resize', help='Don''t rescale the image.', action='store_true') parser.add_argument('--config', help='Path to a configuration parameters .ini file (only used with --convert-model).') parser.add_argument('--group-method', help='Determines how images are grouped together', type=str, default='ratio', choices=['none', 'random', 'ratio']) return parser.parse_args(args) def main(args=None): # parse arguments if args is None: args = sys.argv[1:] args = parse_args(args) # make sure tensorflow is the minimum required version check_tf_version() # optionally choose specific GPU if args.gpu: setup_gpu(args.gpu) # make save path if it doesn't exist if args.save_path is not None and not os.path.exists(args.save_path): os.makedirs(args.save_path) # optionally load config parameters if args.config: args.config = read_config_file(args.config) # create the generator backbone = models.backbone(args.backbone) generator = create_generator(args, backbone.preprocess_image) # optionally load anchor parameters anchor_params = None pyramid_levels = None if args.config and 'anchor_parameters' in args.config: anchor_params = parse_anchor_parameters(args.config) if args.config and 'pyramid_levels' in args.config: pyramid_levels = parse_pyramid_levels(args.config) # load the model print('Loading model, this may take a second...') model = models.load_model(args.model, backbone_name=args.backbone) generator.compute_shapes = make_shapes_callback(model) # optionally convert the model if args.convert_model: model = models.convert_model(model, anchor_params=anchor_params, pyramid_levels=pyramid_levels) # print model summary # print(model.summary()) # start evaluation if args.dataset_type == 'coco': from ..utils.coco_eval import evaluate_coco evaluate_coco(generator, model, args.score_threshold) else: average_precisions, inference_time = evaluate( generator, model, iou_threshold=args.iou_threshold, score_threshold=args.score_threshold, max_detections=args.max_detections, save_path=args.save_path ) # print evaluation total_instances = [] precisions = [] for label, (average_precision, num_annotations) in average_precisions.items(): print('{:.0f} instances of class'.format(num_annotations), generator.label_to_name(label), 'with average precision: {:.4f}'.format(average_precision)) total_instances.append(num_annotations) precisions.append(average_precision) if sum(total_instances) == 0: print('No test instances found.') return print('Inference time for {:.0f} images: {:.4f}'.format(generator.size(), inference_time)) print('mAP using the weighted average of precisions among classes: {:.4f}'.format(sum([a * b for a, b in zip(total_instances, precisions)]) / sum(total_instances))) print('mAP: {:.4f}'.format(sum(precisions) / sum(x > 0 for x in total_instances))) if __name__ == '__main__': main()