EVOLUTION-MANAGER
Edit File: backend.py
""" Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import tensorflow from tensorflow import keras def bbox_transform_inv(boxes, deltas, mean=None, std=None): """ Applies deltas (usually regression results) to boxes (usually anchors). Before applying the deltas to the boxes, the normalization that was previously applied (in the generator) has to be removed. The mean and std are the mean and std as applied in the generator. They are unnormalized in this function and then applied to the boxes. Args boxes : np.array of shape (B, N, 4), where B is the batch size, N the number of boxes and 4 values for (x1, y1, x2, y2). deltas: np.array of same shape as boxes. These deltas (d_x1, d_y1, d_x2, d_y2) are a factor of the width/height. mean : The mean value used when computing deltas (defaults to [0, 0, 0, 0]). std : The standard deviation used when computing deltas (defaults to [0.2, 0.2, 0.2, 0.2]). Returns A np.array of the same shape as boxes, but with deltas applied to each box. The mean and std are used during training to normalize the regression values (networks love normalization). """ if mean is None: mean = [0, 0, 0, 0] if std is None: std = [0.2, 0.2, 0.2, 0.2] width = boxes[:, :, 2] - boxes[:, :, 0] height = boxes[:, :, 3] - boxes[:, :, 1] x1 = boxes[:, :, 0] + (deltas[:, :, 0] * std[0] + mean[0]) * width y1 = boxes[:, :, 1] + (deltas[:, :, 1] * std[1] + mean[1]) * height x2 = boxes[:, :, 2] + (deltas[:, :, 2] * std[2] + mean[2]) * width y2 = boxes[:, :, 3] + (deltas[:, :, 3] * std[3] + mean[3]) * height pred_boxes = keras.backend.stack([x1, y1, x2, y2], axis=2) return pred_boxes def shift(shape, stride, anchors): """ Produce shifted anchors based on shape of the map and stride size. Args shape : Shape to shift the anchors over. stride : Stride to shift the anchors with over the shape. anchors: The anchors to apply at each location. """ shift_x = (keras.backend.arange(0, shape[1], dtype=keras.backend.floatx()) + keras.backend.constant(0.5, dtype=keras.backend.floatx())) * stride shift_y = (keras.backend.arange(0, shape[0], dtype=keras.backend.floatx()) + keras.backend.constant(0.5, dtype=keras.backend.floatx())) * stride shift_x, shift_y = tensorflow.meshgrid(shift_x, shift_y) shift_x = keras.backend.reshape(shift_x, [-1]) shift_y = keras.backend.reshape(shift_y, [-1]) shifts = keras.backend.stack([ shift_x, shift_y, shift_x, shift_y ], axis=0) shifts = keras.backend.transpose(shifts) number_of_anchors = keras.backend.shape(anchors)[0] k = keras.backend.shape(shifts)[0] # number of base points = feat_h * feat_w shifted_anchors = keras.backend.reshape(anchors, [1, number_of_anchors, 4]) + keras.backend.cast(keras.backend.reshape(shifts, [k, 1, 4]), keras.backend.floatx()) shifted_anchors = keras.backend.reshape(shifted_anchors, [k * number_of_anchors, 4]) return shifted_anchors def map_fn(*args, **kwargs): """ See https://www.tensorflow.org/api_docs/python/tf/map_fn . """ if "shapes" in kwargs: shapes = kwargs.pop("shapes") dtype = kwargs.pop("dtype") sig = [tensorflow.TensorSpec(shapes[i], dtype=t) for i, t in enumerate(dtype)] # Try to use the new feature fn_output_signature in TF 2.3, use fallback if this is not available try: return tensorflow.map_fn(*args, **kwargs, fn_output_signature=sig) except TypeError: kwargs["dtype"] = dtype return tensorflow.map_fn(*args, **kwargs) def resize_images(images, size, method='bilinear', align_corners=False): """ See https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/image/resize_images . Args method: The method used for interpolation. One of ('bilinear', 'nearest', 'bicubic', 'area'). """ methods = { 'bilinear': tensorflow.image.ResizeMethod.BILINEAR, 'nearest' : tensorflow.image.ResizeMethod.NEAREST_NEIGHBOR, 'bicubic' : tensorflow.image.ResizeMethod.BICUBIC, 'area' : tensorflow.image.ResizeMethod.AREA, } return tensorflow.compat.v1.image.resize_images(images, size, methods[method], align_corners)