EVOLUTION-MANAGER
Edit File: evaluate.py
#! /usr/bin/env python import argparse import os import json from imageai.Detection.Custom.voc import parse_voc_annotation from imageai.Detection.Custom.generator import BatchGenerator from imageai.Detection.Custom.utils.utils import normalize, evaluate from keras.models import load_model def _main_(args): config_path = args.conf with open(config_path) as config_buffer: config = json.loads(config_buffer.read()) ############################### # Create the validation generator ############################### valid_ints, labels = parse_voc_annotation( config['valid']['valid_annot_folder'], config['valid']['valid_image_folder'], config['valid']['cache_name'], config['model']['labels'] ) labels = labels.keys() if len(config['model']['labels']) == 0 else config['model']['labels'] labels = sorted(labels) valid_generator = BatchGenerator( instances = valid_ints, anchors = config['model']['anchors'], labels = labels, downsample = 32, # ratio between network input's size and network output's size, 32 for YOLOv3 max_box_per_image = 0, batch_size = config['train']['batch_size'], min_net_size = config['model']['min_input_size'], max_net_size = config['model']['max_input_size'], shuffle = True, jitter = 0.0, norm = normalize ) ############################### # Load the model and do evaluation ############################### os.environ['CUDA_VISIBLE_DEVICES'] = config['train']['gpus'] infer_model = load_model(config['train']['saved_weights_name']) # compute mAP for all the classes average_precisions = evaluate(infer_model, valid_generator) # print the score for label, average_precision in average_precisions.items(): print(labels[label] + ': {:.4f}'.format(average_precision)) print('mAP: {:.4f}'.format(sum(average_precisions.values()) / len(average_precisions))) if __name__ == '__main__': argparser = argparse.ArgumentParser(description='Evaluate YOLO_v3 model on any dataset') argparser.add_argument('-c', '--conf', help='path to configuration file') args = argparser.parse_args() _main_(args)