EVOLUTION-MANAGER
Edit File: ortho.cpp
#define PJ_LIB__ #include <errno.h> #include "proj.h" #include "proj_internal.h" #include <math.h> PROJ_HEAD(ortho, "Orthographic") "\n\tAzi, Sph"; namespace { // anonymous namespace enum Mode { N_POLE = 0, S_POLE = 1, EQUIT = 2, OBLIQ = 3 }; } // anonymous namespace namespace { // anonymous namespace struct pj_opaque { double sinph0; double cosph0; enum Mode mode; }; } // anonymous namespace #define EPS10 1.e-10 static PJ_XY forward_error(PJ *P, PJ_LP lp, PJ_XY xy) { proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION); proj_log_trace(P, "Coordinate (%.3f, %.3f) is on the unprojected hemisphere", proj_todeg(lp.lam), proj_todeg(lp.phi)); return xy; } static PJ_XY ortho_s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */ PJ_XY xy; struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque); double coslam, cosphi, sinphi; xy.x = HUGE_VAL; xy.y = HUGE_VAL; cosphi = cos(lp.phi); coslam = cos(lp.lam); switch (Q->mode) { case EQUIT: if (cosphi * coslam < - EPS10) return forward_error(P, lp, xy); xy.y = sin(lp.phi); break; case OBLIQ: if (Q->sinph0 * (sinphi = sin(lp.phi)) + Q->cosph0 * cosphi * coslam < - EPS10) return forward_error(P, lp, xy); xy.y = Q->cosph0 * sinphi - Q->sinph0 * cosphi * coslam; break; case N_POLE: coslam = - coslam; /*-fallthrough*/ case S_POLE: if (fabs(lp.phi - P->phi0) - EPS10 > M_HALFPI) return forward_error(P, lp, xy); xy.y = cosphi * coslam; break; } xy.x = cosphi * sin(lp.lam); return xy; } static PJ_LP ortho_s_inverse (PJ_XY xy, PJ *P) { /* Spheroidal, inverse */ PJ_LP lp; struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque); double rh, cosc, sinc; lp.lam = HUGE_VAL; lp.phi = HUGE_VAL; if ((sinc = (rh = hypot(xy.x, xy.y))) > 1.) { if ((sinc - 1.) > EPS10) { proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION); proj_log_trace(P, "Point (%.3f, %.3f) is outside the projection boundary"); return lp; } sinc = 1.; } cosc = sqrt(1. - sinc * sinc); /* in this range OK */ if (fabs(rh) <= EPS10) { lp.phi = P->phi0; lp.lam = 0.0; } else { switch (Q->mode) { case N_POLE: xy.y = -xy.y; lp.phi = acos(sinc); break; case S_POLE: lp.phi = - acos(sinc); break; case EQUIT: lp.phi = xy.y * sinc / rh; xy.x *= sinc; xy.y = cosc * rh; goto sinchk; case OBLIQ: lp.phi = cosc * Q->sinph0 + xy.y * sinc * Q->cosph0 /rh; xy.y = (cosc - Q->sinph0 * lp.phi) * rh; xy.x *= sinc * Q->cosph0; sinchk: if (fabs(lp.phi) >= 1.) lp.phi = lp.phi < 0. ? -M_HALFPI : M_HALFPI; else lp.phi = asin(lp.phi); break; } lp.lam = (xy.y == 0. && (Q->mode == OBLIQ || Q->mode == EQUIT)) ? (xy.x == 0. ? 0. : xy.x < 0. ? -M_HALFPI : M_HALFPI) : atan2(xy.x, xy.y); } return lp; } PJ *PROJECTION(ortho) { struct pj_opaque *Q = static_cast<struct pj_opaque*>(pj_calloc (1, sizeof (struct pj_opaque))); if (nullptr==Q) return pj_default_destructor(P, ENOMEM); P->opaque = Q; if (fabs(fabs(P->phi0) - M_HALFPI) <= EPS10) Q->mode = P->phi0 < 0. ? S_POLE : N_POLE; else if (fabs(P->phi0) > EPS10) { Q->mode = OBLIQ; Q->sinph0 = sin(P->phi0); Q->cosph0 = cos(P->phi0); } else Q->mode = EQUIT; P->inv = ortho_s_inverse; P->fwd = ortho_s_forward; P->es = 0.; return P; }