EVOLUTION-MANAGER
Edit File: cpl_recode_stub.cpp
/********************************************************************** * $Id: cpl_recode_stub.cpp 27044 2014-03-16 23:41:27Z rouault $ * * Name: cpl_recode_stub.cpp * Project: CPL - Common Portability Library * Purpose: Character set recoding and char/wchar_t conversions, stub * implementation to be used if iconv() functionality is not * available. * Author: Frank Warmerdam, warmerdam@pobox.com * * The bulk of this code is derived from the utf.c module from FLTK. It * was originally downloaded from: * http://svn.easysw.com/public/fltk/fltk/trunk/src/utf.c * ********************************************************************** * Copyright (c) 2008, Frank Warmerdam * Copyright 2006 by Bill Spitzak and others. * Copyright (c) 2009-2014, Even Rouault <even dot rouault at mines-paris dot org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. **********************************************************************/ #include "cpl_string.h" CPL_CVSID("$Id: cpl_recode_stub.cpp 27044 2014-03-16 23:41:27Z rouault $"); #ifdef CPL_RECODE_STUB static unsigned utf8decode(const char* p, const char* end, int* len); static unsigned utf8towc(const char* src, unsigned srclen, wchar_t* dst, unsigned dstlen); static unsigned utf8toa(const char* src, unsigned srclen, char* dst, unsigned dstlen); static unsigned utf8fromwc(char* dst, unsigned dstlen, const wchar_t* src, unsigned srclen); static unsigned utf8froma(char* dst, unsigned dstlen, const char* src, unsigned srclen); static int utf8test(const char* src, unsigned srclen); #ifdef _WIN32 #include <windows.h> #include <winnls.h> static char* CPLWin32Recode( const char* src, unsigned src_code_page, unsigned dst_code_page ); #endif #ifdef FUTURE_NEEDS static const char* utf8fwd(const char* p, const char* start, const char* end); static const char* utf8back(const char* p, const char* start, const char*end); static int utf8encode(unsigned ucs, char* buf); static int utf8bytes(unsigned ucs); #endif /* def FUTURE_NEEDS */ /************************************************************************/ /* ==================================================================== */ /* Stub Implementation not depending on iconv() or WIN32 API. */ /* ==================================================================== */ /************************************************************************/ static int bHaveWarned1 = FALSE; static int bHaveWarned2 = FALSE; static int bHaveWarned3 = FALSE; static int bHaveWarned4 = FALSE; static int bHaveWarned5 = FALSE; static int bHaveWarned6 = FALSE; /************************************************************************/ /* CPLClearRecodeStubWarningFlags() */ /************************************************************************/ void CPLClearRecodeStubWarningFlags() { bHaveWarned1 = FALSE; bHaveWarned2 = FALSE; bHaveWarned3 = FALSE; bHaveWarned4 = FALSE; bHaveWarned5 = FALSE; bHaveWarned6 = FALSE; } /************************************************************************/ /* CPLRecodeStub() */ /************************************************************************/ /** * Convert a string from a source encoding to a destination encoding. * * The only guaranteed supported encodings are CPL_ENC_UTF8, CPL_ENC_ASCII * and CPL_ENC_ISO8859_1. Currently, the following conversions are supported : * <ul> * <li>CPL_ENC_ASCII -> CPL_ENC_UTF8 or CPL_ENC_ISO8859_1 (no conversion in fact)</li> * <li>CPL_ENC_ISO8859_1 -> CPL_ENC_UTF8</li> * <li>CPL_ENC_UTF8 -> CPL_ENC_ISO8859_1</li> * </ul> * * If an error occurs an error may, or may not be posted with CPLError(). * * @param pszSource a NULL terminated string. * @param pszSrcEncoding the source encoding. * @param pszDstEncoding the destination encoding. * * @return a NULL terminated string which should be freed with CPLFree(). */ char *CPLRecodeStub( const char *pszSource, const char *pszSrcEncoding, const char *pszDstEncoding ) { /* -------------------------------------------------------------------- */ /* If the source or destination is current locale(), we change */ /* it to ISO8859-1 since our stub implementation does not */ /* attempt to address locales properly. */ /* -------------------------------------------------------------------- */ if( pszSrcEncoding[0] == '\0' ) pszSrcEncoding = CPL_ENC_ISO8859_1; if( pszDstEncoding[0] == '\0' ) pszDstEncoding = CPL_ENC_ISO8859_1; /* -------------------------------------------------------------------- */ /* ISO8859 to UTF8 */ /* -------------------------------------------------------------------- */ if( strcmp(pszSrcEncoding,CPL_ENC_ISO8859_1) == 0 && strcmp(pszDstEncoding,CPL_ENC_UTF8) == 0 ) { int nCharCount = strlen(pszSource); char *pszResult = (char *) CPLCalloc(1,nCharCount*2+1); utf8froma( pszResult, nCharCount*2+1, pszSource, nCharCount ); return pszResult; } /* -------------------------------------------------------------------- */ /* UTF8 to ISO8859 */ /* -------------------------------------------------------------------- */ if( strcmp(pszSrcEncoding,CPL_ENC_UTF8) == 0 && strcmp(pszDstEncoding,CPL_ENC_ISO8859_1) == 0 ) { int nCharCount = strlen(pszSource); char *pszResult = (char *) CPLCalloc(1,nCharCount+1); utf8toa( pszSource, nCharCount, pszResult, nCharCount+1 ); return pszResult; } #ifdef _WIN32 /* ---------------------------------------------------------------------*/ /* CPXXX to UTF8 */ /* ---------------------------------------------------------------------*/ if( strncmp(pszSrcEncoding,"CP",2) == 0 && strcmp(pszDstEncoding,CPL_ENC_UTF8) == 0 ) { int nCode = atoi( pszSrcEncoding + 2 ); if( nCode > 0 ) { return CPLWin32Recode( pszSource, nCode, CP_UTF8 ); } else if( EQUAL(pszSrcEncoding, "CP_OEMCP") ) return CPLWin32Recode( pszSource, CP_OEMCP, CP_UTF8 ); } /* ---------------------------------------------------------------------*/ /* UTF8 to CPXXX */ /* ---------------------------------------------------------------------*/ if( strcmp(pszSrcEncoding,CPL_ENC_UTF8) == 0 && strncmp(pszDstEncoding,"CP",2) == 0 ) { int nCode = atoi( pszDstEncoding + 2 ); if( nCode > 0 ) { return CPLWin32Recode( pszSource, CP_UTF8, nCode ); } } #endif /* -------------------------------------------------------------------- */ /* Anything else to UTF-8 is treated as ISO8859-1 to UTF-8 with */ /* a one-time warning. */ /* -------------------------------------------------------------------- */ if( strcmp(pszDstEncoding,CPL_ENC_UTF8) == 0 ) { int nCharCount = strlen(pszSource); char *pszResult = (char *) CPLCalloc(1,nCharCount*2+1); if( !bHaveWarned1 ) { bHaveWarned1 = 1; CPLError( CE_Warning, CPLE_AppDefined, "Recode from %s to UTF-8 not supported, treated as ISO8859-1 to UTF-8.", pszSrcEncoding ); } utf8froma( pszResult, nCharCount*2+1, pszSource, nCharCount ); return pszResult; } /* -------------------------------------------------------------------- */ /* UTF-8 to anything else is treated as UTF-8 to ISO-8859-1 */ /* with a warning. */ /* -------------------------------------------------------------------- */ if( strcmp(pszSrcEncoding,CPL_ENC_UTF8) == 0 && strcmp(pszDstEncoding,CPL_ENC_ISO8859_1) == 0 ) { int nCharCount = strlen(pszSource); char *pszResult = (char *) CPLCalloc(1,nCharCount+1); if( !bHaveWarned2 ) { bHaveWarned2 = 1; CPLError( CE_Warning, CPLE_AppDefined, "Recode from UTF-8 to %s not supported, treated as UTF-8 to ISO8859-1.", pszDstEncoding ); } utf8toa( pszSource, nCharCount, pszResult, nCharCount+1 ); return pszResult; } /* -------------------------------------------------------------------- */ /* Everything else is treated as a no-op with a warning. */ /* -------------------------------------------------------------------- */ { if( !bHaveWarned3 ) { bHaveWarned3 = 1; CPLError( CE_Warning, CPLE_AppDefined, "Recode from %s to %s not supported, no change applied.", pszSrcEncoding, pszDstEncoding ); } return CPLStrdup(pszSource); } } /************************************************************************/ /* CPLRecodeFromWCharStub() */ /************************************************************************/ /** * Convert wchar_t string to UTF-8. * * Convert a wchar_t string into a multibyte utf-8 string. The only * guaranteed supported source encoding is CPL_ENC_UCS2, and the only * guaranteed supported destination encodings are CPL_ENC_UTF8, CPL_ENC_ASCII * and CPL_ENC_ISO8859_1. In some cases (ie. using iconv()) other encodings * may also be supported. * * Note that the wchar_t type varies in size on different systems. On * win32 it is normally 2 bytes, and on unix 4 bytes. * * If an error occurs an error may, or may not be posted with CPLError(). * * @param pwszSource the source wchar_t string, terminated with a 0 wchar_t. * @param pszSrcEncoding the source encoding, typically CPL_ENC_UCS2. * @param pszDstEncoding the destination encoding, typically CPL_ENC_UTF8. * * @return a zero terminated multi-byte string which should be freed with * CPLFree(), or NULL if an error occurs. */ char *CPLRecodeFromWCharStub( const wchar_t *pwszSource, const char *pszSrcEncoding, const char *pszDstEncoding ) { /* -------------------------------------------------------------------- */ /* We try to avoid changes of character set. We are just */ /* providing for unicode to unicode. */ /* -------------------------------------------------------------------- */ if( strcmp(pszSrcEncoding,"WCHAR_T") != 0 && strcmp(pszSrcEncoding,CPL_ENC_UTF8) != 0 && strcmp(pszSrcEncoding,CPL_ENC_UTF16) != 0 && strcmp(pszSrcEncoding,CPL_ENC_UCS2) != 0 && strcmp(pszSrcEncoding,CPL_ENC_UCS4) != 0 ) { CPLError( CE_Failure, CPLE_AppDefined, "Stub recoding implementation does not support\n" "CPLRecodeFromWCharStub(...,%s,%s)", pszSrcEncoding, pszDstEncoding ); return NULL; } /* -------------------------------------------------------------------- */ /* What is the source length. */ /* -------------------------------------------------------------------- */ int nSrcLen = 0; while( pwszSource[nSrcLen] != 0 ) nSrcLen++; /* -------------------------------------------------------------------- */ /* Allocate destination buffer plenty big. */ /* -------------------------------------------------------------------- */ char *pszResult; int nDstBufSize, nDstLen; nDstBufSize = nSrcLen * 4 + 1; pszResult = (char *) CPLMalloc(nDstBufSize); // nearly worst case. if (nSrcLen == 0) { pszResult[0] = '\0'; return pszResult; } /* -------------------------------------------------------------------- */ /* Convert, and confirm we had enough space. */ /* -------------------------------------------------------------------- */ nDstLen = utf8fromwc( pszResult, nDstBufSize, pwszSource, nSrcLen ); if( nDstLen >= nDstBufSize - 1 ) { CPLAssert( FALSE ); // too small! return NULL; } /* -------------------------------------------------------------------- */ /* If something other than UTF-8 was requested, recode now. */ /* -------------------------------------------------------------------- */ if( strcmp(pszDstEncoding,CPL_ENC_UTF8) == 0 ) return pszResult; char *pszFinalResult = CPLRecodeStub( pszResult, CPL_ENC_UTF8, pszDstEncoding ); CPLFree( pszResult ); return pszFinalResult; } /************************************************************************/ /* CPLRecodeToWCharStub() */ /************************************************************************/ /** * Convert UTF-8 string to a wchar_t string. * * Convert a 8bit, multi-byte per character input string into a wide * character (wchar_t) string. The only guaranteed supported source encodings * are CPL_ENC_UTF8, CPL_ENC_ASCII and CPL_ENC_ISO8869_1 (LATIN1). The only * guaranteed supported destination encoding is CPL_ENC_UCS2. Other source * and destination encodings may be supported depending on the underlying * implementation. * * Note that the wchar_t type varies in size on different systems. On * win32 it is normally 2 bytes, and on unix 4 bytes. * * If an error occurs an error may, or may not be posted with CPLError(). * * @param pszSource input multi-byte character string. * @param pszSrcEncoding source encoding, typically CPL_ENC_UTF8. * @param pszDstEncoding destination encoding, typically CPL_ENC_UCS2. * * @return the zero terminated wchar_t string (to be freed with CPLFree()) or * NULL on error. * * @since GDAL 1.6.0 */ wchar_t *CPLRecodeToWCharStub( const char *pszSource, const char *pszSrcEncoding, const char *pszDstEncoding ) { char *pszUTF8Source = (char *) pszSource; if( strcmp(pszSrcEncoding,CPL_ENC_UTF8) != 0 && strcmp(pszSrcEncoding,CPL_ENC_ASCII) != 0 ) { pszUTF8Source = CPLRecodeStub( pszSource, pszSrcEncoding, CPL_ENC_UTF8 ); if( pszUTF8Source == NULL ) return NULL; } /* -------------------------------------------------------------------- */ /* We try to avoid changes of character set. We are just */ /* providing for unicode to unicode. */ /* -------------------------------------------------------------------- */ if( strcmp(pszDstEncoding,"WCHAR_T") != 0 && strcmp(pszDstEncoding,CPL_ENC_UCS2) != 0 && strcmp(pszDstEncoding,CPL_ENC_UCS4) != 0 && strcmp(pszDstEncoding,CPL_ENC_UTF16) != 0 ) { CPLError( CE_Failure, CPLE_AppDefined, "Stub recoding implementation does not support\n" "CPLRecodeToWCharStub(...,%s,%s)", pszSrcEncoding, pszDstEncoding ); return NULL; } /* -------------------------------------------------------------------- */ /* Do the UTF-8 to UCS-2 recoding. */ /* -------------------------------------------------------------------- */ int nSrcLen = strlen(pszUTF8Source); wchar_t *pwszResult = (wchar_t *) CPLCalloc(sizeof(wchar_t),nSrcLen+1); utf8towc( pszUTF8Source, nSrcLen, pwszResult, nSrcLen+1 ); if( pszUTF8Source != pszSource ) CPLFree( pszUTF8Source ); return pwszResult; } /************************************************************************/ /* CPLIsUTF8() */ /************************************************************************/ /** * Test if a string is encoded as UTF-8. * * @param pabyData input string to test * @param nLen length of the input string, or -1 if the function must compute * the string length. In which case it must be null terminated. * @return TRUE if the string is encoded as UTF-8. FALSE otherwise * * @since GDAL 1.7.0 */ int CPLIsUTF8Stub(const char* pabyData, int nLen) { if (nLen < 0) nLen = strlen(pabyData); return utf8test(pabyData, (unsigned)nLen) != 0; } /************************************************************************/ /* ==================================================================== */ /* UTF.C code from FLTK with some modifications. */ /* ==================================================================== */ /************************************************************************/ /* Set to 1 to turn bad UTF8 bytes into ISO-8859-1. If this is to zero they are instead turned into the Unicode REPLACEMENT CHARACTER, of value 0xfffd. If this is on utf8decode will correctly map most (perhaps all) human-readable text that is in ISO-8859-1. This may allow you to completely ignore character sets in your code because virtually everything is either ISO-8859-1 or UTF-8. */ #define ERRORS_TO_ISO8859_1 1 /* Set to 1 to turn bad UTF8 bytes in the 0x80-0x9f range into the Unicode index for Microsoft's CP1252 character set. You should also set ERRORS_TO_ISO8859_1. With this a huge amount of more available text (such as all web pages) are correctly converted to Unicode. */ #define ERRORS_TO_CP1252 1 /* A number of Unicode code points are in fact illegal and should not be produced by a UTF-8 converter. Turn this on will replace the bytes in those encodings with errors. If you do this then converting arbitrary 16-bit data to UTF-8 and then back is not an identity, which will probably break a lot of software. */ #define STRICT_RFC3629 0 #if ERRORS_TO_CP1252 // Codes 0x80..0x9f from the Microsoft CP1252 character set, translated // to Unicode: static unsigned short cp1252[32] = { 0x20ac, 0x0081, 0x201a, 0x0192, 0x201e, 0x2026, 0x2020, 0x2021, 0x02c6, 0x2030, 0x0160, 0x2039, 0x0152, 0x008d, 0x017d, 0x008f, 0x0090, 0x2018, 0x2019, 0x201c, 0x201d, 0x2022, 0x2013, 0x2014, 0x02dc, 0x2122, 0x0161, 0x203a, 0x0153, 0x009d, 0x017e, 0x0178 }; #endif /************************************************************************/ /* utf8decode() */ /************************************************************************/ /* Decode a single UTF-8 encoded character starting at \e p. The resulting Unicode value (in the range 0-0x10ffff) is returned, and \e len is set the the number of bytes in the UTF-8 encoding (adding \e len to \e p will point at the next character). If \a p points at an illegal UTF-8 encoding, including one that would go past \e end, or where a code is uses more bytes than necessary, then *(unsigned char*)p is translated as though it is in the Microsoft CP1252 character set and \e len is set to 1. Treating errors this way allows this to decode almost any ISO-8859-1 or CP1252 text that has been mistakenly placed where UTF-8 is expected, and has proven very useful. If you want errors to be converted to error characters (as the standards recommend), adding a test to see if the length is unexpectedly 1 will work: \code if (*p & 0x80) { // what should be a multibyte encoding code = utf8decode(p,end,&len); if (len<2) code = 0xFFFD; // Turn errors into REPLACEMENT CHARACTER } else { // handle the 1-byte utf8 encoding: code = *p; len = 1; } \endcode Direct testing for the 1-byte case (as shown above) will also speed up the scanning of strings where the majority of characters are ASCII. */ static unsigned utf8decode(const char* p, const char* end, int* len) { unsigned char c = *(unsigned char*)p; if (c < 0x80) { *len = 1; return c; #if ERRORS_TO_CP1252 } else if (c < 0xa0) { *len = 1; return cp1252[c-0x80]; #endif } else if (c < 0xc2) { goto FAIL; } if (p+1 >= end || (p[1]&0xc0) != 0x80) goto FAIL; if (c < 0xe0) { *len = 2; return ((p[0] & 0x1f) << 6) + ((p[1] & 0x3f)); } else if (c == 0xe0) { if (((unsigned char*)p)[1] < 0xa0) goto FAIL; goto UTF8_3; #if STRICT_RFC3629 } else if (c == 0xed) { // RFC 3629 says surrogate chars are illegal. if (((unsigned char*)p)[1] >= 0xa0) goto FAIL; goto UTF8_3; } else if (c == 0xef) { // 0xfffe and 0xffff are also illegal characters if (((unsigned char*)p)[1]==0xbf && ((unsigned char*)p)[2]>=0xbe) goto FAIL; goto UTF8_3; #endif } else if (c < 0xf0) { UTF8_3: if (p+2 >= end || (p[2]&0xc0) != 0x80) goto FAIL; *len = 3; return ((p[0] & 0x0f) << 12) + ((p[1] & 0x3f) << 6) + ((p[2] & 0x3f)); } else if (c == 0xf0) { if (((unsigned char*)p)[1] < 0x90) goto FAIL; goto UTF8_4; } else if (c < 0xf4) { UTF8_4: if (p+3 >= end || (p[2]&0xc0) != 0x80 || (p[3]&0xc0) != 0x80) goto FAIL; *len = 4; #if STRICT_RFC3629 // RFC 3629 says all codes ending in fffe or ffff are illegal: if ((p[1]&0xf)==0xf && ((unsigned char*)p)[2] == 0xbf && ((unsigned char*)p)[3] >= 0xbe) goto FAIL; #endif return ((p[0] & 0x07) << 18) + ((p[1] & 0x3f) << 12) + ((p[2] & 0x3f) << 6) + ((p[3] & 0x3f)); } else if (c == 0xf4) { if (((unsigned char*)p)[1] > 0x8f) goto FAIL; // after 0x10ffff goto UTF8_4; } else { FAIL: *len = 1; #if ERRORS_TO_ISO8859_1 return c; #else return 0xfffd; // Unicode REPLACEMENT CHARACTER #endif } } /************************************************************************/ /* utf8fwd() */ /************************************************************************/ /* Move \a p forward until it points to the start of a UTF-8 character. If it already points at the start of one then it is returned unchanged. Any UTF-8 errors are treated as though each byte of the error is an individual character. \e start is the start of the string and is used to limit the backwards search for the start of a utf8 character. \e end is the end of the string and is assummed to be a break between characters. It is assummed to be greater than p. This function is for moving a pointer that was jumped to the middle of a string, such as when doing a binary search for a position. You should use either this or utf8back() depending on which direction your algorithim can handle the pointer moving. Do not use this to scan strings, use utf8decode() instead. */ #ifdef FUTURE_NEEDS static const char* utf8fwd(const char* p, const char* start, const char* end) { const char* a; int len; // if we are not pointing at a continuation character, we are done: if ((*p&0xc0) != 0x80) return p; // search backwards for a 0xc0 starting the character: for (a = p-1; ; --a) { if (a < start) return p; if (!(a[0]&0x80)) return p; if ((a[0]&0x40)) break; } utf8decode(a,end,&len); a += len; if (a > p) return a; return p; } #endif /* def FUTURE_NEEDS */ /************************************************************************/ /* utf8back() */ /************************************************************************/ /* Move \a p backward until it points to the start of a UTF-8 character. If it already points at the start of one then it is returned unchanged. Any UTF-8 errors are treated as though each byte of the error is an individual character. \e start is the start of the string and is used to limit the backwards search for the start of a UTF-8 character. \e end is the end of the string and is assummed to be a break between characters. It is assummed to be greater than p. If you wish to decrement a UTF-8 pointer, pass p-1 to this. */ #ifdef FUTURE_NEEDS static const char* utf8back(const char* p, const char* start, const char* end) { const char* a; int len; // if we are not pointing at a continuation character, we are done: if ((*p&0xc0) != 0x80) return p; // search backwards for a 0xc0 starting the character: for (a = p-1; ; --a) { if (a < start) return p; if (!(a[0]&0x80)) return p; if ((a[0]&0x40)) break; } utf8decode(a,end,&len); if (a+len > p) return a; return p; } #endif /* def FUTURE_NEEDS */ /************************************************************************/ /* utf8bytes() */ /************************************************************************/ /* Returns number of bytes that utf8encode() will use to encode the character \a ucs. */ #ifdef FUTURE_NEEDS static int utf8bytes(unsigned ucs) { if (ucs < 0x000080U) { return 1; } else if (ucs < 0x000800U) { return 2; } else if (ucs < 0x010000U) { return 3; } else if (ucs < 0x10ffffU) { return 4; } else { return 3; // length of the illegal character encoding } } #endif /* def FUTURE_NEEDS */ /************************************************************************/ /* utf8encode() */ /************************************************************************/ /* Write the UTF-8 encoding of \e ucs into \e buf and return the number of bytes written. Up to 4 bytes may be written. If you know that \a ucs is less than 0x10000 then at most 3 bytes will be written. If you wish to speed this up, remember that anything less than 0x80 is written as a single byte. If ucs is greater than 0x10ffff this is an illegal character according to RFC 3629. These are converted as though they are 0xFFFD (REPLACEMENT CHARACTER). RFC 3629 also says many other values for \a ucs are illegal (in the range 0xd800 to 0xdfff, or ending with 0xfffe or 0xffff). However I encode these as though they are legal, so that utf8encode/utf8decode will be the identity for all codes between 0 and 0x10ffff. */ #ifdef FUTURE_NEEDS static int utf8encode(unsigned ucs, char* buf) { if (ucs < 0x000080U) { buf[0] = ucs; return 1; } else if (ucs < 0x000800U) { buf[0] = 0xc0 | (ucs >> 6); buf[1] = 0x80 | (ucs & 0x3F); return 2; } else if (ucs < 0x010000U) { buf[0] = 0xe0 | (ucs >> 12); buf[1] = 0x80 | ((ucs >> 6) & 0x3F); buf[2] = 0x80 | (ucs & 0x3F); return 3; } else if (ucs < 0x0010ffffU) { buf[0] = 0xf0 | (ucs >> 18); buf[1] = 0x80 | ((ucs >> 12) & 0x3F); buf[2] = 0x80 | ((ucs >> 6) & 0x3F); buf[3] = 0x80 | (ucs & 0x3F); return 4; } else { // encode 0xfffd: buf[0] = 0xefU; buf[1] = 0xbfU; buf[2] = 0xbdU; return 3; } } #endif /* def FUTURE_NEEDS */ /************************************************************************/ /* utf8towc() */ /************************************************************************/ /* Convert a UTF-8 sequence into an array of wchar_t. These are used by some system calls, especially on Windows. \a src points at the UTF-8, and \a srclen is the number of bytes to convert. \a dst points at an array to write, and \a dstlen is the number of locations in this array. At most \a dstlen-1 words will be written there, plus a 0 terminating word. Thus this function will never overwrite the buffer and will always return a zero-terminated string. If \a dstlen is zero then \a dst can be null and no data is written, but the length is returned. The return value is the number of words that \e would be written to \a dst if it were long enough, not counting the terminating zero. If the return value is greater or equal to \a dstlen it indicates truncation, you can then allocate a new array of size return+1 and call this again. Errors in the UTF-8 are converted as though each byte in the erroneous string is in the Microsoft CP1252 encoding. This allows ISO-8859-1 text mistakenly identified as UTF-8 to be printed correctly. Notice that sizeof(wchar_t) is 2 on Windows and is 4 on Linux and most other systems. Where wchar_t is 16 bits, Unicode characters in the range 0x10000 to 0x10ffff are converted to "surrogate pairs" which take two words each (this is called UTF-16 encoding). If wchar_t is 32 bits this rather nasty problem is avoided. */ static unsigned utf8towc(const char* src, unsigned srclen, wchar_t* dst, unsigned dstlen) { const char* p = src; const char* e = src+srclen; unsigned count = 0; if (dstlen) for (;;) { if (p >= e) {dst[count] = 0; return count;} if (!(*p & 0x80)) { // ascii dst[count] = *p++; } else { int len; unsigned ucs = utf8decode(p,e,&len); p += len; #ifdef _WIN32 if (ucs < 0x10000) { dst[count] = (wchar_t)ucs; } else { // make a surrogate pair: if (count+2 >= dstlen) {dst[count] = 0; count += 2; break;} dst[count] = (wchar_t)((((ucs-0x10000u)>>10)&0x3ff) | 0xd800); dst[++count] = (wchar_t)((ucs&0x3ff) | 0xdc00); } #else dst[count] = (wchar_t)ucs; #endif } if (++count == dstlen) {dst[count-1] = 0; break;} } // we filled dst, measure the rest: while (p < e) { if (!(*p & 0x80)) p++; else { #ifdef _WIN32 int len; unsigned ucs = utf8decode(p,e,&len); p += len; if (ucs >= 0x10000) ++count; #else int len; utf8decode(p,e,&len); p += len; #endif } ++count; } return count; } /************************************************************************/ /* utf8toa() */ /************************************************************************/ /* Convert a UTF-8 sequence into an array of 1-byte characters. If the UTF-8 decodes to a character greater than 0xff then it is replaced with '?'. Errors in the UTF-8 are converted as individual bytes, same as utf8decode() does. This allows ISO-8859-1 text mistakenly identified as UTF-8 to be printed correctly (and possibly CP1512 on Windows). \a src points at the UTF-8, and \a srclen is the number of bytes to convert. Up to \a dstlen bytes are written to \a dst, including a null terminator. The return value is the number of bytes that would be written, not counting the null terminator. If greater or equal to \a dstlen then if you malloc a new array of size n+1 you will have the space needed for the entire string. If \a dstlen is zero then nothing is written and this call just measures the storage space needed. */ static unsigned utf8toa(const char* src, unsigned srclen, char* dst, unsigned dstlen) { const char* p = src; const char* e = src+srclen; unsigned count = 0; if (dstlen) for (;;) { unsigned char c; if (p >= e) {dst[count] = 0; return count;} c = *(unsigned char*)p; if (c < 0xC2) { // ascii or bad code dst[count] = c; p++; } else { int len; unsigned ucs = utf8decode(p,e,&len); p += len; if (ucs < 0x100) dst[count] = (char)ucs; else { if (!bHaveWarned4) { bHaveWarned4 = TRUE; CPLError(CE_Warning, CPLE_AppDefined, "One or several characters couldn't be converted correctly from UTF-8 to ISO-8859-1.\n" "This warning will not be emitted anymore."); } dst[count] = '?'; } } if (++count >= dstlen) {dst[count-1] = 0; break;} } // we filled dst, measure the rest: while (p < e) { if (!(*p & 0x80)) p++; else { int len; utf8decode(p,e,&len); p += len; } ++count; } return count; } /************************************************************************/ /* utf8fromwc() */ /************************************************************************/ /* Turn "wide characters" as returned by some system calls (especially on Windows) into UTF-8. Up to \a dstlen bytes are written to \a dst, including a null terminator. The return value is the number of bytes that would be written, not counting the null terminator. If greater or equal to \a dstlen then if you malloc a new array of size n+1 you will have the space needed for the entire string. If \a dstlen is zero then nothing is written and this call just measures the storage space needed. \a srclen is the number of words in \a src to convert. On Windows this is not necessairly the number of characters, due to there possibly being "surrogate pairs" in the UTF-16 encoding used. On Unix wchar_t is 32 bits and each location is a character. On Unix if a src word is greater than 0x10ffff then this is an illegal character according to RFC 3629. These are converted as though they are 0xFFFD (REPLACEMENT CHARACTER). Characters in the range 0xd800 to 0xdfff, or ending with 0xfffe or 0xffff are also illegal according to RFC 3629. However I encode these as though they are legal, so that utf8towc will return the original data. On Windows "surrogate pairs" are converted to a single character and UTF-8 encoded (as 4 bytes). Mismatched halves of surrogate pairs are converted as though they are individual characters. */ static unsigned utf8fromwc(char* dst, unsigned dstlen, const wchar_t* src, unsigned srclen) { unsigned i = 0; unsigned count = 0; if (dstlen) for (;;) { unsigned ucs; if (i >= srclen) {dst[count] = 0; return count;} ucs = src[i++]; if (ucs < 0x80U) { dst[count++] = (char)ucs; if (count >= dstlen) {dst[count-1] = 0; break;} } else if (ucs < 0x800U) { // 2 bytes if (count+2 >= dstlen) {dst[count] = 0; count += 2; break;} dst[count++] = 0xc0 | (char)(ucs >> 6); dst[count++] = 0x80 | (char)(ucs & 0x3F); #ifdef _WIN32 } else if (ucs >= 0xd800 && ucs <= 0xdbff && i < srclen && src[i] >= 0xdc00 && src[i] <= 0xdfff) { // surrogate pair unsigned ucs2 = src[i++]; ucs = 0x10000U + ((ucs&0x3ff)<<10) + (ucs2&0x3ff); // all surrogate pairs turn into 4-byte utf8 #else } else if (ucs >= 0x10000) { if (ucs > 0x10ffff) { ucs = 0xfffd; goto J1; } #endif if (count+4 >= dstlen) {dst[count] = 0; count += 4; break;} dst[count++] = 0xf0 | (char)(ucs >> 18); dst[count++] = 0x80 | (char)((ucs >> 12) & 0x3F); dst[count++] = 0x80 | (char)((ucs >> 6) & 0x3F); dst[count++] = 0x80 | (char)(ucs & 0x3F); } else { #ifndef _WIN32 J1: #endif // all others are 3 bytes: if (count+3 >= dstlen) {dst[count] = 0; count += 3; break;} dst[count++] = 0xe0 | (char)(ucs >> 12); dst[count++] = 0x80 | (char)((ucs >> 6) & 0x3F); dst[count++] = 0x80 | (char)(ucs & 0x3F); } } // we filled dst, measure the rest: while (i < srclen) { unsigned ucs = src[i++]; if (ucs < 0x80U) { count++; } else if (ucs < 0x800U) { // 2 bytes count += 2; #ifdef _WIN32 } else if (ucs >= 0xd800 && ucs <= 0xdbff && i < srclen-1 && src[i+1] >= 0xdc00 && src[i+1] <= 0xdfff) { // surrogate pair ++i; #else } else if (ucs >= 0x10000 && ucs <= 0x10ffff) { #endif count += 4; } else { count += 3; } } return count; } /************************************************************************/ /* utf8froma() */ /************************************************************************/ /* Convert an ISO-8859-1 (ie normal c-string) byte stream to UTF-8. It is possible this should convert Microsoft's CP1252 to UTF-8 instead. This would translate the codes in the range 0x80-0x9f to different characters. Currently it does not do this. Up to \a dstlen bytes are written to \a dst, including a null terminator. The return value is the number of bytes that would be written, not counting the null terminator. If greater or equal to \a dstlen then if you malloc a new array of size n+1 you will have the space needed for the entire string. If \a dstlen is zero then nothing is written and this call just measures the storage space needed. \a srclen is the number of bytes in \a src to convert. If the return value equals \a srclen then this indicates that no conversion is necessary, as only ASCII characters are in the string. */ static unsigned utf8froma(char* dst, unsigned dstlen, const char* src, unsigned srclen) { const char* p = src; const char* e = src+srclen; unsigned count = 0; if (dstlen) for (;;) { unsigned char ucs; if (p >= e) {dst[count] = 0; return count;} ucs = *(unsigned char*)p++; if (ucs < 0x80U) { dst[count++] = ucs; if (count >= dstlen) {dst[count-1] = 0; break;} } else { // 2 bytes (note that CP1252 translate could make 3 bytes!) if (count+2 >= dstlen) {dst[count] = 0; count += 2; break;} dst[count++] = 0xc0 | (ucs >> 6); dst[count++] = 0x80 | (ucs & 0x3F); } } // we filled dst, measure the rest: while (p < e) { unsigned char ucs = *(unsigned char*)p++; if (ucs < 0x80U) { count++; } else { count += 2; } } return count; } #ifdef _WIN32 /************************************************************************/ /* CPLWin32Recode() */ /************************************************************************/ /* Convert an CODEPAGE (ie normal c-string) byte stream to another CODEPAGE (ie normal c-string) byte stream. \a src is target c-string byte stream (including a null terminator). \a src_code_page is target c-string byte code page. \a dst_code_page is destination c-string byte code page. UTF7 65000 UTF8 65001 OEM-US 437 OEM-ALABIC 720 OEM-GREEK 737 OEM-BALTIC 775 OEM-MLATIN1 850 OEM-LATIN2 852 OEM-CYRILLIC 855 OEM-TURKISH 857 OEM-MLATIN1P 858 OEM-HEBREW 862 OEM-RUSSIAN 866 THAI 874 SJIS 932 GBK 936 KOREA 949 BIG5 950 EUROPE 1250 CYRILLIC 1251 LATIN1 1252 GREEK 1253 TURKISH 1254 HEBREW 1255 ARABIC 1256 BALTIC 1257 VIETNAM 1258 ISO-LATIN1 28591 ISO-LATIN2 28592 ISO-LATIN3 28593 ISO-BALTIC 28594 ISO-CYRILLIC 28595 ISO-ARABIC 28596 ISO-HEBREW 28598 ISO-TURKISH 28599 ISO-LATIN9 28605 ISO-2022-JP 50220 */ char* CPLWin32Recode( const char* src, unsigned src_code_page, unsigned dst_code_page ) { /* Convert from source code page to Unicode */ /* Compute the length in wide characters */ int wlen = MultiByteToWideChar( src_code_page, MB_ERR_INVALID_CHARS, src, -1, 0, 0 ); if (wlen == 0 && GetLastError() == ERROR_NO_UNICODE_TRANSLATION) { if (!bHaveWarned5) { bHaveWarned5 = TRUE; CPLError(CE_Warning, CPLE_AppDefined, "One or several characters could not be translated from CP%d. " "This warning will not be emitted anymore.", src_code_page); } /* Retry now without MB_ERR_INVALID_CHARS flag */ wlen = MultiByteToWideChar( src_code_page, 0, src, -1, 0, 0 ); } /* Do the actual conversion */ wchar_t* tbuf = (wchar_t*)CPLCalloc(sizeof(wchar_t),wlen+1); tbuf[wlen] = 0; MultiByteToWideChar( src_code_page, 0, src, -1, tbuf, wlen+1 ); /* Convert from Unicode to destination code page */ /* Compute the length in chars */ BOOL bUsedDefaultChar = FALSE; int len; if ( dst_code_page == CP_UTF7 || dst_code_page == CP_UTF8 ) len = WideCharToMultiByte( dst_code_page, 0, tbuf, -1, 0, 0, 0, NULL ); else len = WideCharToMultiByte( dst_code_page, 0, tbuf, -1, 0, 0, 0, &bUsedDefaultChar ); if (bUsedDefaultChar) { if (!bHaveWarned6) { bHaveWarned6 = TRUE; CPLError(CE_Warning, CPLE_AppDefined, "One or several characters could not be translated to CP%d. " "This warning will not be emitted anymore.", dst_code_page); } } /* Do the actual conversion */ char* pszResult = (char*)CPLCalloc(sizeof(char),len+1); WideCharToMultiByte( dst_code_page, 0, tbuf, -1, pszResult, len+1, 0, NULL ); pszResult[len] = 0; /* Cleanup */ CPLFree(tbuf); return pszResult; } #endif /* ** For now we disable the rest which is locale() related. We may need ** parts of it later. */ #ifdef notdef #ifdef _WIN32 # include <windows.h> #endif /*! Return true if the "locale" seems to indicate that UTF-8 encoding is used. If true the utf8tomb and utf8frommb don't do anything useful. <i>It is highly recommended that you change your system so this does return true.</i> On Windows this is done by setting the "codepage" to CP_UTF8. On Unix this is done by setting $LC_CTYPE to a string containing the letters "utf" or "UTF" in it, or by deleting all $LC* and $LANG environment variables. In the future it is likely that all non-Asian Unix systems will return true, due to the compatability of UTF-8 with ISO-8859-1. */ int utf8locale(void) { static int ret = 2; if (ret == 2) { #ifdef _WIN32 ret = GetACP() == CP_UTF8; #else char* s; ret = 1; // assumme UTF-8 if no locale if (((s = getenv("LC_CTYPE")) && *s) || ((s = getenv("LC_ALL")) && *s) || ((s = getenv("LANG")) && *s)) { ret = (strstr(s,"utf") || strstr(s,"UTF")); } #endif } return ret; } /*! Convert the UTF-8 used by FLTK to the locale-specific encoding used for filenames (and sometimes used for data in files). Unfortunatley due to stupid design you will have to do this as needed for filenames. This is a bug on both Unix and Windows. Up to \a dstlen bytes are written to \a dst, including a null terminator. The return value is the number of bytes that would be written, not counting the null terminator. If greater or equal to \a dstlen then if you malloc a new array of size n+1 you will have the space needed for the entire string. If \a dstlen is zero then nothing is written and this call just measures the storage space needed. If utf8locale() returns true then this does not change the data. It is copied and truncated as necessary to the destination buffer and \a srclen is always returned. */ unsigned utf8tomb(const char* src, unsigned srclen, char* dst, unsigned dstlen) { if (!utf8locale()) { #ifdef _WIN32 wchar_t lbuf[1024]; wchar_t* buf = lbuf; unsigned length = utf8towc(src, srclen, buf, 1024); unsigned ret; if (length >= 1024) { buf = (wchar_t*)(malloc((length+1)*sizeof(wchar_t))); utf8towc(src, srclen, buf, length+1); } if (dstlen) { // apparently this does not null-terminate, even though msdn // documentation claims it does: ret = WideCharToMultiByte(GetACP(), 0, buf, length, dst, dstlen, 0, 0); dst[ret] = 0; } // if it overflows or measuring length, get the actual length: if (dstlen==0 || ret >= dstlen-1) ret = WideCharToMultiByte(GetACP(), 0, buf, length, 0, 0, 0, 0); if (buf != lbuf) free((void*)buf); return ret; #else wchar_t lbuf[1024]; wchar_t* buf = lbuf; unsigned length = utf8towc(src, srclen, buf, 1024); int ret; if (length >= 1024) { buf = (wchar_t*)(malloc((length+1)*sizeof(wchar_t))); utf8towc(src, srclen, buf, length+1); } if (dstlen) { ret = wcstombs(dst, buf, dstlen); if (ret >= dstlen-1) ret = wcstombs(0,buf,0); } else { ret = wcstombs(0,buf,0); } if (buf != lbuf) free((void*)buf); if (ret >= 0) return (unsigned)ret; // on any errors we return the UTF-8 as raw text... #endif } // identity transform: if (srclen < dstlen) { memcpy(dst, src, srclen); dst[srclen] = 0; } else { memcpy(dst, src, dstlen-1); dst[dstlen-1] = 0; } return srclen; } /*! Convert a filename from the locale-specific multibyte encoding used by Windows to UTF-8 as used by FLTK. Up to \a dstlen bytes are written to \a dst, including a null terminator. The return value is the number of bytes that would be written, not counting the null terminator. If greater or equal to \a dstlen then if you malloc a new array of size n+1 you will have the space needed for the entire string. If \a dstlen is zero then nothing is written and this call just measures the storage space needed. On Unix or on Windows when a UTF-8 locale is in effect, this does not change the data. It is copied and truncated as necessary to the destination buffer and \a srclen is always returned. You may also want to check if utf8test() returns non-zero, so that the filesystem can store filenames in UTF-8 encoding regardless of the locale. */ unsigned utf8frommb(char* dst, unsigned dstlen, const char* src, unsigned srclen) { if (!utf8locale()) { #ifdef _WIN32 wchar_t lbuf[1024]; wchar_t* buf = lbuf; unsigned length; unsigned ret; length = MultiByteToWideChar(GetACP(), 0, src, srclen, buf, 1024); if (length >= 1024) { length = MultiByteToWideChar(GetACP(), 0, src, srclen, 0, 0); buf = (wchar_t*)(malloc(length*sizeof(wchar_t))); MultiByteToWideChar(GetACP(), 0, src, srclen, buf, length); } ret = utf8fromwc(dst, dstlen, buf, length); if (buf != lbuf) free((void*)buf); return ret; #else wchar_t lbuf[1024]; wchar_t* buf = lbuf; int length; unsigned ret; length = mbstowcs(buf, src, 1024); if (length >= 1024) { length = mbstowcs(0, src, 0)+1; buf = (wchar_t*)(malloc(length*sizeof(unsigned short))); mbstowcs(buf, src, length); } if (length >= 0) { ret = utf8fromwc(dst, dstlen, buf, length); if (buf != lbuf) free((void*)buf); return ret; } // errors in conversion return the UTF-8 unchanged #endif } // identity transform: if (srclen < dstlen) { memcpy(dst, src, srclen); dst[srclen] = 0; } else { memcpy(dst, src, dstlen-1); dst[dstlen-1] = 0; } return srclen; } #endif /* def notdef - disabled locale specific stuff */ /*! Examines the first \a srclen bytes in \a src and return a verdict on whether it is UTF-8 or not. - Returns 0 if there is any illegal UTF-8 sequences, using the same rules as utf8decode(). Note that some UCS values considered illegal by RFC 3629, such as 0xffff, are considered legal by this. - Returns 1 if there are only single-byte characters (ie no bytes have the high bit set). This is legal UTF-8, but also indicates plain ASCII. It also returns 1 if \a srclen is zero. - Returns 2 if there are only characters less than 0x800. - Returns 3 if there are only characters less than 0x10000. - Returns 4 if there are characters in the 0x10000 to 0x10ffff range. Because there are many illegal sequences in UTF-8, it is almost impossible for a string in another encoding to be confused with UTF-8. This is very useful for transitioning Unix to UTF-8 filenames, you can simply test each filename with this to decide if it is UTF-8 or in the locale encoding. My hope is that if this is done we will be able to cleanly transition to a locale-less encoding. */ static int utf8test(const char* src, unsigned srclen) { int ret = 1; const char* p = src; const char* e = src+srclen; while (p < e) { if (*p & 0x80) { int len; utf8decode(p,e,&len); if (len < 2) return 0; if (len > ret) ret = len; p += len; } else { p++; } } return ret; } #endif /* defined(CPL_RECODE_STUB) */