EVOLUTION-MANAGER
Edit File: __init__.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Import core names of TensorFlow. Programs that want to build TensorFlow Ops and Graphs without having to import the constructors and utilities individually can import this file: from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf """ import ctypes import importlib import sys import traceback # We aim to keep this file minimal and ideally remove completely. # If you are adding a new file with @tf_export decorators, # import it in modules_with_exports.py instead. # go/tf-wildcard-import # pylint: disable=wildcard-import,g-bad-import-order,g-import-not-at-top from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context # pylint: enable=wildcard-import # Bring in subpackages. from tensorflow.python import data from tensorflow.python import distribute from tensorflow.python import keras from tensorflow.python.feature_column import feature_column_lib as feature_column from tensorflow.python.layers import layers from tensorflow.python.module import module from tensorflow.python.ops import bincount_ops from tensorflow.python.ops import bitwise_ops as bitwise from tensorflow.python.ops import cond_v2 from tensorflow.python.ops import gradient_checker_v2 from tensorflow.python.ops import image_ops as image from tensorflow.python.ops import manip_ops as manip from tensorflow.python.ops import metrics from tensorflow.python.ops import nn from tensorflow.python.ops import numpy_ops from tensorflow.python.ops import ragged from tensorflow.python.ops import sets from tensorflow.python.ops import stateful_random_ops from tensorflow.python.ops import while_v2 from tensorflow.python.ops.distributions import distributions from tensorflow.python.ops.linalg import linalg from tensorflow.python.ops.linalg.sparse import sparse from tensorflow.python.ops.losses import losses from tensorflow.python.ops.ragged import ragged_ops as _ragged_ops from tensorflow.python.ops.signal import signal from tensorflow.python.profiler import profiler from tensorflow.python.profiler import profiler_client from tensorflow.python.profiler import profiler_v2 from tensorflow.python.profiler import trace from tensorflow.python.saved_model import saved_model from tensorflow.python.summary import summary from tensorflow.python.tpu import api from tensorflow.python.user_ops import user_ops from tensorflow.python.util import compat # Update the RaggedTensor package docs w/ a list of ops that support dispatch. ragged.__doc__ += _ragged_ops.ragged_dispatch.ragged_op_list() # Import to make sure the ops are registered. from tensorflow.python.ops import gen_audio_ops from tensorflow.python.ops import gen_boosted_trees_ops from tensorflow.python.ops import gen_cudnn_rnn_ops from tensorflow.python.ops import gen_rnn_ops from tensorflow.python.ops import gen_sendrecv_ops from tensorflow.python.ops import gen_tpu_ops # Import the names from python/training.py as train.Name. from tensorflow.python.training import training as train from tensorflow.python.training import quantize_training as _quantize_training # Sub-package for performing i/o directly instead of via ops in a graph. from tensorflow.python.lib.io import python_io # Make some application and test modules available. from tensorflow.python.platform import app from tensorflow.python.platform import flags from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.platform import resource_loader from tensorflow.python.platform import sysconfig as sysconfig_lib from tensorflow.python.platform import test from tensorflow.python.compat import v2_compat from tensorflow.python.util.all_util import make_all from tensorflow.python.util.tf_export import tf_export # Eager execution from tensorflow.python.eager.context import executing_eagerly from tensorflow.python.eager.remote import connect_to_remote_host from tensorflow.python.eager.def_function import function from tensorflow.python.framework.ops import enable_eager_execution # Check whether TF2_BEHAVIOR is turned on. from tensorflow.python.eager import monitoring as _monitoring from tensorflow.python import tf2 as _tf2 _tf2_gauge = _monitoring.BoolGauge( '/tensorflow/api/tf2_enable', 'Environment variable TF2_BEHAVIOR is set".') _tf2_gauge.get_cell().set(_tf2.enabled()) # Necessary for the symbols in this module to be taken into account by # the namespace management system (API decorators). from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell # TensorFlow Debugger (tfdbg). from tensorflow.python.debug.lib import check_numerics_callback from tensorflow.python.debug.lib import dumping_callback from tensorflow.python.ops import gen_debug_ops # DLPack from tensorflow.python.dlpack.dlpack import from_dlpack from tensorflow.python.dlpack.dlpack import to_dlpack # XLA JIT compiler APIs. from tensorflow.python.compiler.xla import jit from tensorflow.python.compiler.xla import xla # MLIR APIs. from tensorflow.python.compiler.mlir import mlir # Required due to `rnn` and `rnn_cell` not being imported in `nn` directly # (due to a circular dependency issue: rnn depends on layers). nn.dynamic_rnn = rnn.dynamic_rnn nn.static_rnn = rnn.static_rnn nn.raw_rnn = rnn.raw_rnn nn.bidirectional_dynamic_rnn = rnn.bidirectional_dynamic_rnn nn.static_state_saving_rnn = rnn.static_state_saving_rnn nn.rnn_cell = rnn_cell # Special dunders that we choose to export: _exported_dunders = set([ '__version__', '__git_version__', '__compiler_version__', '__cxx11_abi_flag__', '__monolithic_build__', ]) # Expose symbols minus dunders, unless they are allowlisted above. # This is necessary to export our dunders. __all__ = [s for s in dir() if s in _exported_dunders or not s.startswith('_')]