EVOLUTION-MANAGER
Edit File: function_serialization.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools for serializing `Function`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.core.protobuf import saved_object_graph_pb2 from tensorflow.python.eager import function as defun from tensorflow.python.framework import func_graph as func_graph_module from tensorflow.python.saved_model import nested_structure_coder from tensorflow.python.util import compat from tensorflow.python.util import nest def _serialize_function_spec(function_spec, coder): """Serialize a FunctionSpec object into its proto representation.""" if function_spec.is_method and not function_spec.fullargspec.args: raise NotImplementedError( "Missing support to serialize a method function without a named " "'self' argument.") proto = saved_object_graph_pb2.FunctionSpec() # Intentionally skip encoding annotations of a function because function # annotations are mainly for optional type checking during development # and does not affect runtime behavior. # https://www.python.org/dev/peps/pep-3107/ # https://docs.python.org/3/library/inspect.html#inspect.getfullargspec proto.fullargspec.CopyFrom( coder.encode_structure( function_spec.fullargspec._replace(annotations={}))) proto.is_method = function_spec.is_method proto.input_signature.CopyFrom( coder.encode_structure(function_spec.input_signature)) # See `tf.function` and the ExperimentalCompile proto for details. proto.experimental_compile = { None: saved_object_graph_pb2.FunctionSpec.ExperimentalCompile.DEFAULT, True: saved_object_graph_pb2.FunctionSpec.ExperimentalCompile.ON, False: saved_object_graph_pb2.FunctionSpec.ExperimentalCompile.OFF, }.get(function_spec.experimental_compile) return proto def serialize_concrete_function(concrete_function, node_ids, coder): """Build a SavedConcreteFunction.""" bound_inputs = [] try: for capture in concrete_function.captured_inputs: bound_inputs.append(node_ids[capture]) except KeyError: raise KeyError( "Failed to add concrete function %s to object based saved model as it " "captures tensor %s which is unsupported or not reachable from root. " "One reason could be that a stateful object or a variable that the " "function depends on is not assigned to an attribute of the serialized " "trackable object " "(see SaveTest.test_captures_unreachable_variable)." % (concrete_function.name, capture)) concrete_function_proto = saved_object_graph_pb2.SavedConcreteFunction() structured_outputs = func_graph_module.convert_structure_to_signature( concrete_function.structured_outputs) concrete_function_proto.canonicalized_input_signature.CopyFrom( coder.encode_structure(concrete_function.structured_input_signature)) concrete_function_proto.output_signature.CopyFrom( coder.encode_structure(structured_outputs)) concrete_function_proto.bound_inputs.extend(bound_inputs) return concrete_function_proto def serialize_bare_concrete_function(concrete_function, name_map): """Build a SavedBareConcreteFunction.""" # pylint: disable=protected-access name = name_map.get(compat.as_text(concrete_function.name), concrete_function.name) proto = saved_object_graph_pb2.SavedBareConcreteFunction( concrete_function_name=name, allowed_positional_arguments=concrete_function._num_positional_args, argument_keywords=concrete_function._arg_keywords) if concrete_function._pre_initialized_function_spec is not None: coder = nested_structure_coder.StructureCoder() proto.function_spec.CopyFrom( _serialize_function_spec( concrete_function._pre_initialized_function_spec, coder)) return proto # pylint: enable=protected-access def serialize_function(function, name_map): """Build a SavedFunction proto.""" coder = nested_structure_coder.StructureCoder() proto = saved_object_graph_pb2.SavedFunction() function_spec_proto = _serialize_function_spec(function.function_spec, coder) proto.function_spec.CopyFrom(function_spec_proto) all_concrete_functions = \ function._list_all_concrete_functions_for_serialization() # pylint: disable=protected-access for concrete_function in all_concrete_functions: proto.concrete_functions.append( name_map.get(compat.as_text(concrete_function.name), concrete_function.name)) return proto def wrap_cached_variables(concrete_function): """Wraps the concrete function if it uses cached read tensors. This function creates a new concrete function that captures variables instead of the cached read tensors. Args: concrete_function: A Concrete function that maybe captures cached read tensors. Returns: A concrete function that wraps the original concrete function, which captures variables instead. If the original function did not capture any cached values, then the function is not wrapped and the original object is returned. """ outer_graph = func_graph_module.FuncGraph( "{}_no_cache".format(concrete_function.graph.name)) captures = concrete_function.graph._captures # pylint: disable=protected-access mapped_captures = None remapped_captures = {} # Update the external captures to use read tensors generated in the outer # graph. with outer_graph.as_default(): for capture, placeholder in concrete_function.graph.captures: cached_variable = getattr(capture, "_cached_variable", None) if cached_variable is None: continue cached_variable = cached_variable() new_cached_value = cached_variable.read_value() remapped_captures[id(capture)] = captures[id(capture)] captures[id(capture)] = (new_cached_value, placeholder) mapped_captures = True if not mapped_captures: return concrete_function inner_concrete = defun.ConcreteFunction(concrete_function.graph) def wrap_function(*args): return inner_concrete._call_flat(args, inner_concrete.captured_inputs) # pylint:disable=protected-access args = nest.flatten(concrete_function.structured_input_signature, expand_composites=True) func_graph_module.func_graph_from_py_func( None, wrap_function, args=tuple(args), kwargs={}, func_graph=outer_graph) fn = defun.ConcreteFunction( outer_graph, function_spec=concrete_function._function_spec) # pylint: disable=protected-access fn._arg_keywords = concrete_function._arg_keywords # pylint: disable=protected-access fn._num_positional_args = concrete_function._num_positional_args # pylint: disable=protected-access # Return the captures to their original values for key, capture in remapped_captures.items(): captures[key] = capture return fn