EVOLUTION-MANAGER
Edit File: init_ops_v2.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Initializers for TF 2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_linalg_ops from tensorflow.python.ops import linalg_ops_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import stateless_random_ops from tensorflow.python.ops.init_ops import _compute_fans from tensorflow.python.util.tf_export import tf_export _PARTITION_SHAPE = "partition_shape" _PARTITION_OFFSET = "partition_offset" class Initializer(object): """Initializer base class: all initializers inherit from this class. Initializers should implement a `__call__` method with the following signature: ```python def __call__(self, shape, dtype=None, **kwargs): # returns a tensor of shape `shape` and dtype `dtype` # containing values drawn from a distribution of your choice. ``` """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. If not provided will return tensor of `tf.float32`. **kwargs: Additional keyword arguments. Accepted values: `partition_shape` and `partition_offset`. Used when creating a single partition in a partitioned variable. `partition_shape` is the shape of the partition (i.e. the shape of the returned tensor) and `partition_offset` is a tuple of `int` specifying the offset of this partition w.r.t each axis. For example, a tensor of shape `(30, 100)` can be partitioned into two partitions: `p0` of shape `(10, 100)` and `p1` of shape `(20, 100)`; if the initializer is called with `partition_shape=(20, 100)` and `partition_offset=(10, 0)`, it should return the value for `p1`. """ raise NotImplementedError def get_config(self): """Returns the configuration of the initializer as a JSON-serializable dict. Returns: A JSON-serializable Python dict. """ return {} @classmethod def from_config(cls, config): """Instantiates an initializer from a configuration dictionary. Example: ```python initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config) ``` Args: config: A Python dictionary. It will typically be the output of `get_config`. Returns: An Initializer instance. """ config.pop("dtype", None) return cls(**config) def _validate_kwargs(self, kwargs, support_partition=True): for kwarg in kwargs: if kwarg not in [_PARTITION_SHAPE, _PARTITION_OFFSET]: raise TypeError("Unknown keyword arguments: %s" % kwarg) elif not support_partition: raise ValueError("%s initializer doesn't support partition-related" " arguments" % self.__class__.__name__) @tf_export("zeros_initializer", v1=[]) class Zeros(Initializer): """Initializer that generates tensors initialized to 0. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.zeros_initializer()) >>> v1 <tf.Variable ... shape=(3,) ... numpy=array([0., 0., 0.], dtype=float32)> >>> v2 <tf.Variable ... shape=(3, 3) ... numpy= array([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]], dtype=float32)> >>> make_variables(4, tf.random_uniform_initializer(minval=-1., maxval=1.)) (<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ... """ def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are supported. **kwargs: Additional keyword arguments. Raises: ValuesError: If the dtype is not numeric or boolean. """ self._validate_kwargs(kwargs) dtype = dtypes.as_dtype(dtype) if not dtype.is_numpy_compatible or dtype == dtypes.string: raise ValueError("Expected numeric or boolean dtype, got %s." % dtype) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return array_ops.zeros(shape, dtype) @tf_export("ones_initializer", v1=[]) class Ones(Initializer): """Initializer that generates tensors initialized to 1. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.ones_initializer()) >>> v1 <tf.Variable ... shape=(3,) ... numpy=array([1., 1., 1.], dtype=float32)> >>> v2 <tf.Variable ... shape=(3, 3) ... numpy= array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], dtype=float32)> >>> make_variables(4, tf.random_uniform_initializer(minval=-1., maxval=1.)) (<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ... """ def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are supported. **kwargs: Additional keyword arguments. Raises: ValuesError: If the dtype is not numeric or boolean. """ self._validate_kwargs(kwargs) dtype = dtypes.as_dtype(dtype) if not dtype.is_numpy_compatible or dtype == dtypes.string: raise ValueError("Expected numeric or boolean dtype, got %s." % dtype) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return array_ops.ones(shape, dtype) @tf_export("constant_initializer", v1=[]) class Constant(Initializer): """Initializer that generates tensors with constant values. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. `tf.constant_initializer` returns an object which when called returns a tensor populated with the `value` specified in the constructor. This `value` must be convertible to the requested `dtype`. The argument `value` can be a scalar constant value, or a list of values. Scalars broadcast to whichever shape is requested from the initializer. If `value` is a list, then the length of the list must be equal to the number of elements implied by the desired shape of the tensor. If the total number of elements in `value` is not equal to the number of elements required by the tensor shape, the initializer will raise a `TypeError`. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.constant_initializer(2.)) >>> v1 <tf.Variable ... shape=(3,) ... numpy=array([2., 2., 2.], dtype=float32)> >>> v2 <tf.Variable ... shape=(3, 3) ... numpy= array([[2., 2., 2.], [2., 2., 2.], [2., 2., 2.]], dtype=float32)> >>> make_variables(4, tf.random_uniform_initializer(minval=-1., maxval=1.)) (<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ... >>> value = [0, 1, 2, 3, 4, 5, 6, 7] >>> init = tf.constant_initializer(value) >>> # Fitting shape >>> tf.Variable(init(shape=[2, 4], dtype=tf.float32)) <tf.Variable ... array([[0., 1., 2., 3.], [4., 5., 6., 7.]], dtype=float32)> >>> # Larger shape >>> tf.Variable(init(shape=[3, 4], dtype=tf.float32)) Traceback (most recent call last): ... TypeError: ...value has 8 elements, shape is (3, 4) with 12 elements... >>> # Smaller shape >>> tf.Variable(init(shape=[2, 3], dtype=tf.float32)) Traceback (most recent call last): ... TypeError: ...value has 8 elements, shape is (2, 3) with 6 elements... Args: value: A Python scalar, list or tuple of values, or a N-dimensional numpy array. All elements of the initialized variable will be set to the corresponding value in the `value` argument. Raises: TypeError: If the input `value` is not one of the expected types. """ def __init__(self, value=0): if not (np.isscalar(value) or isinstance(value, (list, tuple, np.ndarray))): raise TypeError( "Invalid type for initial value: %s (expected Python scalar, list or " "tuple of values, or numpy.ndarray)." % type(value)) self.value = value def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. If not provided the dtype of the tensor created will be the type of the inital value. **kwargs: Additional keyword arguments. Raises: TypeError: If the initializer cannot create a tensor of the requested dtype. """ self._validate_kwargs(kwargs, support_partition=False) if dtype is not None: dtype = dtypes.as_dtype(dtype) return constant_op.constant(self.value, dtype=dtype, shape=shape) def get_config(self): return {"value": self.value} @tf_export("random_uniform_initializer", v1=[]) class RandomUniform(Initializer): """Initializer that generates tensors with a uniform distribution. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.ones_initializer()) >>> v1 <tf.Variable ... shape=(3,) ... numpy=array([1., 1., 1.], dtype=float32)> >>> v2 <tf.Variable ... shape=(3, 3) ... numpy= array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], dtype=float32)> >>> make_variables(4, tf.random_uniform_initializer(minval=-1., maxval=1.)) (<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ... Args: minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate (inclusive). maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate (exclusive). seed: A Python integer. Used to create random seeds. See `tf.random.set_seed` for behavior. """ def __init__(self, minval=-0.05, maxval=0.05, seed=None): self.minval = minval self.maxval = maxval self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point and integer types are supported. **kwargs: Additional keyword arguments. Raises: ValueError: If the dtype is not numeric. """ self._validate_kwargs(kwargs) dtype = dtypes.as_dtype(dtype) if not dtype.is_floating and not dtype.is_integer: raise ValueError("Expected float or integer dtype, got %s." % dtype) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return self._random_generator.random_uniform(shape, self.minval, self.maxval, dtype) def get_config(self): return { "minval": self.minval, "maxval": self.maxval, "seed": self.seed } @tf_export("random_normal_initializer", v1=[]) class RandomNormal(Initializer): """Initializer that generates tensors with a normal distribution. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, ... tf.random_normal_initializer(mean=1., stddev=2.)) >>> v1 <tf.Variable ... shape=(3,) ... numpy=array([...], dtype=float32)> >>> v2 <tf.Variable ... shape=(3, 3) ... numpy= ... >>> make_variables(4, tf.random_uniform_initializer(minval=-1., maxval=1.)) (<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ... Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to create random seeds. See `tf.random.set_seed` for behavior. """ def __init__(self, mean=0.0, stddev=0.05, seed=None): self.mean = mean self.stddev = stddev self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. **kwargs: Additional keyword arguments. Raises: ValueError: If the dtype is not floating point """ self._validate_kwargs(kwargs) dtype = _assert_float_dtype(dtype) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return self._random_generator.random_normal(shape, self.mean, self.stddev, dtype) def get_config(self): return { "mean": self.mean, "stddev": self.stddev, "seed": self.seed } class TruncatedNormal(Initializer): """Initializer that generates a truncated normal distribution. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. These values are similar to values from a `tf.initializers.RandomNormal` except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k], dtype=tf.float32))) >>> v1, v2 = make_variables( ... 3, tf.initializers.TruncatedNormal(mean=1., stddev=2.)) >>> v1 <tf.Variable ... shape=(3,) ... numpy=array([...], dtype=float32)> >>> v2 <tf.Variable ... shape=(3, 3) ... numpy= ... >>> make_variables(4, tf.initializers.RandomUniform(minval=-1., maxval=1.)) (<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ... Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to create random seeds. See `tf.random.set_seed` for behavior. """ def __init__(self, mean=0.0, stddev=0.05, seed=None): self.mean = mean self.stddev = stddev self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. **kwargs: Additional keyword arguments. Raises: ValueError: If the dtype is not floating point """ self._validate_kwargs(kwargs) dtype = _assert_float_dtype(dtype) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return self._random_generator.truncated_normal(shape, self.mean, self.stddev, dtype) def get_config(self): return { "mean": self.mean, "stddev": self.stddev, "seed": self.seed } class VarianceScaling(Initializer): """Initializer capable of adapting its scale to the shape of weights tensors. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. With `distribution="truncated_normal" or "untruncated_normal"`, samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) `stddev = sqrt(scale / n)` where n is: - number of input units in the weight tensor, if mode = "fan_in" - number of output units, if mode = "fan_out" - average of the numbers of input and output units, if mode = "fan_avg" With `distribution="uniform"`, samples are drawn from a uniform distribution within [-limit, limit], with `limit = sqrt(3 * scale / n)`. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.VarianceScaling(scale=1.)) >>> v1 <tf.Variable ... shape=(3,) ... numpy=array([...], dtype=float32)> >>> v2 <tf.Variable ... shape=(3, 3) ... numpy= ... >>> make_variables(4, tf.initializers.VarianceScaling(distribution='uniform')) (<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ... Args: scale: Scaling factor (positive float). mode: One of "fan_in", "fan_out", "fan_avg". distribution: Random distribution to use. One of "truncated_normal", "untruncated_normal" and "uniform". seed: A Python integer. Used to create random seeds. See `tf.random.set_seed` for behavior. Raises: ValueError: In case of an invalid value for the "scale", mode" or "distribution" arguments. """ def __init__(self, scale=1.0, mode="fan_in", distribution="truncated_normal", seed=None): if scale <= 0.: raise ValueError("`scale` must be positive float.") if mode not in {"fan_in", "fan_out", "fan_avg"}: raise ValueError("Invalid `mode` argument:", mode) distribution = distribution.lower() # Compatibility with keras-team/keras. if distribution == "normal": distribution = "truncated_normal" if distribution not in {"uniform", "truncated_normal", "untruncated_normal"}: raise ValueError("Invalid `distribution` argument:", distribution) self.scale = scale self.mode = mode self.distribution = distribution self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. **kwargs: Additional keyword arguments. Raises: ValueError: If the dtype is not floating point """ self._validate_kwargs(kwargs) dtype = _assert_float_dtype(dtype) scale = self.scale fan_in, fan_out = _compute_fans(shape) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] if self.mode == "fan_in": scale /= max(1., fan_in) elif self.mode == "fan_out": scale /= max(1., fan_out) else: scale /= max(1., (fan_in + fan_out) / 2.) if self.distribution == "truncated_normal": # constant from scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1.) stddev = math.sqrt(scale) / .87962566103423978 return self._random_generator.truncated_normal(shape, 0.0, stddev, dtype) elif self.distribution == "untruncated_normal": stddev = math.sqrt(scale) return self._random_generator.random_normal(shape, 0.0, stddev, dtype) else: limit = math.sqrt(3.0 * scale) return self._random_generator.random_uniform(shape, -limit, limit, dtype) def get_config(self): return { "scale": self.scale, "mode": self.mode, "distribution": self.distribution, "seed": self.seed } class Orthogonal(Initializer): """Initializer that generates an orthogonal matrix. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns. If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])` is initialized, where `n` is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k, k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.Orthogonal()) >>> v1 <tf.Variable ... shape=(3, 3) ... >>> v2 <tf.Variable ... shape=(3, 3, 3) ... >>> make_variables(4, tf.initializers.Orthogonal(gain=0.5)) (<tf.Variable ... shape=(4, 4) dtype=float32... <tf.Variable ... shape=(4, 4, 4) dtype=float32... Args: gain: multiplicative factor to apply to the orthogonal matrix seed: A Python integer. Used to create random seeds. See `tf.random.set_seed` for behavior. References: [Saxe et al., 2014](https://openreview.net/forum?id=_wzZwKpTDF_9C) ([pdf](https://arxiv.org/pdf/1312.6120.pdf)) """ def __init__(self, gain=1.0, seed=None): self.gain = gain self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. **kwargs: Additional keyword arguments. Raises: ValueError: If the dtype is not floating point or the input shape is not valid. """ self._validate_kwargs(kwargs, support_partition=False) dtype = _assert_float_dtype(dtype) # Check the shape if len(shape) < 2: raise ValueError("The tensor to initialize must be " "at least two-dimensional") # Flatten the input shape with the last dimension remaining # its original shape so it works for conv2d num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (max(num_cols, num_rows), min(num_cols, num_rows)) # Generate a random matrix a = self._random_generator.random_normal(flat_shape, dtype=dtype) # Compute the qr factorization q, r = gen_linalg_ops.qr(a, full_matrices=False) # Make Q uniform d = array_ops.diag_part(r) q *= math_ops.sign(d) if num_rows < num_cols: q = array_ops.matrix_transpose(q) return self.gain * array_ops.reshape(q, shape) def get_config(self): return {"gain": self.gain, "seed": self.seed} class Identity(Initializer): """Initializer that generates the identity matrix. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Only usable for generating 2D matrices. Examples: >>> def make_variable(k, initializer): ... return tf.Variable(initializer(shape=[k, k], dtype=tf.float32)) >>> make_variable(2, tf.initializers.Identity()) <tf.Variable ... shape=(2, 2) dtype=float32, numpy= array([[1., 0.], [0., 1.]], dtype=float32)> >>> make_variable(3, tf.initializers.Identity(gain=0.5)) <tf.Variable ... shape=(3, 3) dtype=float32, numpy= array([[0.5, 0. , 0. ], [0. , 0.5, 0. ], [0. , 0. , 0.5]], dtype=float32)> Args: gain: Multiplicative factor to apply to the identity matrix. """ def __init__(self, gain=1.0): self.gain = gain def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. **kwargs: Additional keyword arguments. Raises: ValueError: If the dtype is not floating point ValueError: If the requested shape does not have exactly two axes. """ self._validate_kwargs(kwargs, support_partition=False) dtype = _assert_float_dtype(dtype) if len(shape) != 2: raise ValueError( "Identity matrix initializer can only be used for 2D matrices.") initializer = linalg_ops_impl.eye(*shape, dtype=dtype) return self.gain * initializer def get_config(self): return {"gain": self.gain} class GlorotUniform(VarianceScaling): """The Glorot uniform initializer, also called Xavier uniform initializer. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(6 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k, k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.GlorotUniform()) >>> v1 <tf.Variable ... shape=(3, 3) ... >>> v2 <tf.Variable ... shape=(3, 3, 3) ... >>> make_variables(4, tf.initializers.RandomNormal()) (<tf.Variable ... shape=(4, 4) dtype=float32... <tf.Variable ... shape=(4, 4, 4) dtype=float32... Args: seed: A Python integer. Used to create random seeds. See `tf.random.set_seed` for behavior. References: [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) ([pdf](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)) """ def __init__(self, seed=None): super(GlorotUniform, self).__init__( scale=1.0, mode="fan_avg", distribution="uniform", seed=seed) def get_config(self): return {"seed": self.seed} class GlorotNormal(VarianceScaling): """The Glorot normal initializer, also called Xavier normal initializer. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k, k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.GlorotNormal()) >>> v1 <tf.Variable ... shape=(3, 3) ... >>> v2 <tf.Variable ... shape=(3, 3, 3) ... >>> make_variables(4, tf.initializers.RandomNormal()) (<tf.Variable ... shape=(4, 4) dtype=float32... <tf.Variable ... shape=(4, 4, 4) dtype=float32... Args: seed: A Python integer. Used to create random seeds. See `tf.random.set_seed` for behavior. References: [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) ([pdf](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)) """ def __init__(self, seed=None): super(GlorotNormal, self).__init__( scale=1.0, mode="fan_avg", distribution="truncated_normal", seed=seed) def get_config(self): return {"seed": self.seed} # Aliases. # pylint: disable=invalid-name zeros_initializer = Zeros ones_initializer = Ones constant_initializer = Constant random_uniform_initializer = RandomUniform random_normal_initializer = RandomNormal truncated_normal_initializer = TruncatedNormal variance_scaling_initializer = VarianceScaling glorot_uniform_initializer = GlorotUniform glorot_normal_initializer = GlorotNormal orthogonal_initializer = Orthogonal identity_initializer = Identity # pylint: enable=invalid-name def lecun_normal(seed=None): """LeCun normal initializer. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k, k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.lecun_normal()) >>> v1 <tf.Variable ... shape=(3, 3) ... >>> v2 <tf.Variable ... shape=(3, 3, 3) ... >>> make_variables(4, tf.initializers.RandomNormal()) (<tf.Variable ... shape=(4, 4) dtype=float32... <tf.Variable ... shape=(4, 4, 4) dtype=float32... Arguments: seed: A Python integer. Used to seed the random generator. Returns: A callable Initializer with `shape` and `dtype` arguments which generates a tensor. References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017] (https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) ([pdf] (https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ return VarianceScaling( scale=1., mode="fan_in", distribution="truncated_normal", seed=seed) def lecun_uniform(seed=None): """LeCun uniform initializer. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(3 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k, k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.lecun_uniform()) >>> v1 <tf.Variable ... shape=(3, 3) ... >>> v2 <tf.Variable ... shape=(3, 3, 3) ... >>> make_variables(4, tf.initializers.RandomNormal()) (<tf.Variable ... shape=(4, 4) dtype=float32... <tf.Variable ... shape=(4, 4, 4) dtype=float32... Arguments: seed: A Python integer. Used to seed the random generator. Returns: A callable Initializer with `shape` and `dtype` arguments which generates a tensor. References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) # pylint: disable=line-too-long ([pdf](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ return VarianceScaling( scale=1., mode="fan_in", distribution="uniform", seed=seed) def he_normal(seed=None): """He normal initializer. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k, k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.he_normal()) >>> v1 <tf.Variable ... shape=(3, 3) ... >>> v2 <tf.Variable ... shape=(3, 3, 3) ... >>> make_variables(4, tf.initializers.RandomNormal()) (<tf.Variable ... shape=(4, 4) dtype=float32... <tf.Variable ... shape=(4, 4, 4) dtype=float32... Arguments: seed: A Python integer. Used to seed the random generator. Returns: A callable Initializer with `shape` and `dtype` arguments which generates a tensor. References: [He et al., 2015](https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)) """ return VarianceScaling( scale=2., mode="fan_in", distribution="truncated_normal", seed=seed) def he_uniform(seed=None): """He uniform variance scaling initializer. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(6 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k, k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.he_uniform()) >>> v1 <tf.Variable ... shape=(3, 3) ... >>> v2 <tf.Variable ... shape=(3, 3, 3) ... >>> make_variables(4, tf.initializers.RandomNormal()) (<tf.Variable ... shape=(4, 4) dtype=float32... <tf.Variable ... shape=(4, 4, 4) dtype=float32... Arguments: seed: A Python integer. Used to seed the random generator. Returns: A callable Initializer with `shape` and `dtype` arguments which generates a tensor. References: [He et al., 2015](https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)) """ return VarianceScaling( scale=2., mode="fan_in", distribution="uniform", seed=seed) # Utility functions. def _assert_float_dtype(dtype): """Validate and return floating point type based on `dtype`. `dtype` must be a floating point type. Args: dtype: The data type to validate. Returns: Validated type. Raises: ValueError: if `dtype` is not a floating point type. """ dtype = dtypes.as_dtype(dtype) if not dtype.is_floating: raise ValueError("Expected floating point type, got %s." % dtype) return dtype class _RandomGenerator(object): """Random generator that selects appropriate random ops.""" def __init__(self, seed=None): super(_RandomGenerator, self).__init__() if seed is not None: # Stateless random ops requires 2-int seed. self.seed = [seed, 0] else: self.seed = None def random_normal(self, shape, mean=0.0, stddev=1, dtype=dtypes.float32): """A deterministic random normal if seed is passed.""" if self.seed: op = stateless_random_ops.stateless_random_normal else: op = random_ops.random_normal return op( shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=self.seed) def random_uniform(self, shape, minval, maxval, dtype): """A deterministic random uniform if seed is passed.""" if self.seed: op = stateless_random_ops.stateless_random_uniform else: op = random_ops.random_uniform return op( shape=shape, minval=minval, maxval=maxval, dtype=dtype, seed=self.seed) def truncated_normal(self, shape, mean, stddev, dtype): """A deterministic truncated normal if seed is passed.""" if self.seed: op = stateless_random_ops.stateless_truncated_normal else: op = random_ops.truncated_normal return op( shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=self.seed) # Compatibility aliases # pylint: disable=invalid-name zero = zeros = Zeros one = ones = Ones constant = Constant uniform = random_uniform = RandomUniform normal = random_normal = RandomNormal truncated_normal = TruncatedNormal identity = Identity orthogonal = Orthogonal glorot_normal = GlorotNormal glorot_uniform = GlorotUniform