EVOLUTION-MANAGER
Edit File: gen_tensor_forest_ops.py
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. Original C++ source file: tensor_forest_ops.cc """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar def tensor_forest_create_tree_variable(tree_handle, tree_config, name=None): r"""Creates a tree resource and returns a handle to it. Args: tree_handle: A `Tensor` of type `resource`. Handle to the tree resource to be created. tree_config: A `Tensor` of type `string`. Serialized proto string of the boosted_trees.Tree. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TensorForestCreateTreeVariable", name, tree_handle, tree_config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tensor_forest_create_tree_variable_eager_fallback( tree_handle, tree_config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "TensorForestCreateTreeVariable", tree_handle=tree_handle, tree_config=tree_config, name=name) return _op TensorForestCreateTreeVariable = tf_export("raw_ops.TensorForestCreateTreeVariable")(_ops.to_raw_op(tensor_forest_create_tree_variable)) def tensor_forest_create_tree_variable_eager_fallback(tree_handle, tree_config, name, ctx): tree_handle = _ops.convert_to_tensor(tree_handle, _dtypes.resource) tree_config = _ops.convert_to_tensor(tree_config, _dtypes.string) _inputs_flat = [tree_handle, tree_config] _attrs = None _result = _execute.execute(b"TensorForestCreateTreeVariable", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def tensor_forest_tree_deserialize(tree_handle, tree_config, name=None): r"""Deserializes a proto into the tree handle Args: tree_handle: A `Tensor` of type `resource`. Handle to the tree resource to be restored. tree_config: A `Tensor` of type `string`. Serialied proto string of the boosted_trees.Tree proto. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TensorForestTreeDeserialize", name, tree_handle, tree_config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tensor_forest_tree_deserialize_eager_fallback( tree_handle, tree_config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "TensorForestTreeDeserialize", tree_handle=tree_handle, tree_config=tree_config, name=name) return _op TensorForestTreeDeserialize = tf_export("raw_ops.TensorForestTreeDeserialize")(_ops.to_raw_op(tensor_forest_tree_deserialize)) def tensor_forest_tree_deserialize_eager_fallback(tree_handle, tree_config, name, ctx): tree_handle = _ops.convert_to_tensor(tree_handle, _dtypes.resource) tree_config = _ops.convert_to_tensor(tree_config, _dtypes.string) _inputs_flat = [tree_handle, tree_config] _attrs = None _result = _execute.execute(b"TensorForestTreeDeserialize", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def tensor_forest_tree_is_initialized_op(tree_handle, name=None): r"""Checks whether a tree has been initialized. Args: tree_handle: A `Tensor` of type `resource`. Handle to the tree. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TensorForestTreeIsInitializedOp", name, tree_handle) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tensor_forest_tree_is_initialized_op_eager_fallback( tree_handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "TensorForestTreeIsInitializedOp", tree_handle=tree_handle, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TensorForestTreeIsInitializedOp", _inputs_flat, _attrs, _result) _result, = _result return _result TensorForestTreeIsInitializedOp = tf_export("raw_ops.TensorForestTreeIsInitializedOp")(_ops.to_raw_op(tensor_forest_tree_is_initialized_op)) def tensor_forest_tree_is_initialized_op_eager_fallback(tree_handle, name, ctx): tree_handle = _ops.convert_to_tensor(tree_handle, _dtypes.resource) _inputs_flat = [tree_handle] _attrs = None _result = _execute.execute(b"TensorForestTreeIsInitializedOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TensorForestTreeIsInitializedOp", _inputs_flat, _attrs, _result) _result, = _result return _result def tensor_forest_tree_predict(tree_handle, dense_features, logits_dimension, name=None): r"""Output the logits for the given input data Args: tree_handle: A `Tensor` of type `resource`. Handle to the tree resource. dense_features: A `Tensor` of type `float32`. Rank 2 dense features tensor. logits_dimension: An `int`. Scalar, dimension of the logits. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TensorForestTreePredict", name, tree_handle, dense_features, "logits_dimension", logits_dimension) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tensor_forest_tree_predict_eager_fallback( tree_handle, dense_features, logits_dimension=logits_dimension, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. logits_dimension = _execute.make_int(logits_dimension, "logits_dimension") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TensorForestTreePredict", tree_handle=tree_handle, dense_features=dense_features, logits_dimension=logits_dimension, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("logits_dimension", _op._get_attr_int("logits_dimension")) _inputs_flat = _op.inputs _execute.record_gradient( "TensorForestTreePredict", _inputs_flat, _attrs, _result) _result, = _result return _result TensorForestTreePredict = tf_export("raw_ops.TensorForestTreePredict")(_ops.to_raw_op(tensor_forest_tree_predict)) def tensor_forest_tree_predict_eager_fallback(tree_handle, dense_features, logits_dimension, name, ctx): logits_dimension = _execute.make_int(logits_dimension, "logits_dimension") tree_handle = _ops.convert_to_tensor(tree_handle, _dtypes.resource) dense_features = _ops.convert_to_tensor(dense_features, _dtypes.float32) _inputs_flat = [tree_handle, dense_features] _attrs = ("logits_dimension", logits_dimension) _result = _execute.execute(b"TensorForestTreePredict", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TensorForestTreePredict", _inputs_flat, _attrs, _result) _result, = _result return _result def tensor_forest_tree_resource_handle_op(container="", shared_name="", name=None): r"""Creates a handle to a TensorForestTreeResource Args: container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TensorForestTreeResourceHandleOp", name, "container", container, "shared_name", shared_name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tensor_forest_tree_resource_handle_op_eager_fallback( container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TensorForestTreeResourceHandleOp", container=container, shared_name=shared_name, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _inputs_flat = _op.inputs _execute.record_gradient( "TensorForestTreeResourceHandleOp", _inputs_flat, _attrs, _result) _result, = _result return _result TensorForestTreeResourceHandleOp = tf_export("raw_ops.TensorForestTreeResourceHandleOp")(_ops.to_raw_op(tensor_forest_tree_resource_handle_op)) def tensor_forest_tree_resource_handle_op_eager_fallback(container, shared_name, name, ctx): if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("container", container, "shared_name", shared_name) _result = _execute.execute(b"TensorForestTreeResourceHandleOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TensorForestTreeResourceHandleOp", _inputs_flat, _attrs, _result) _result, = _result return _result def tensor_forest_tree_serialize(tree_handle, name=None): r"""Serializes the tree handle to a proto Args: tree_handle: A `Tensor` of type `resource`. Handle to the tree resource to be serialized. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TensorForestTreeSerialize", name, tree_handle) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tensor_forest_tree_serialize_eager_fallback( tree_handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "TensorForestTreeSerialize", tree_handle=tree_handle, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TensorForestTreeSerialize", _inputs_flat, _attrs, _result) _result, = _result return _result TensorForestTreeSerialize = tf_export("raw_ops.TensorForestTreeSerialize")(_ops.to_raw_op(tensor_forest_tree_serialize)) def tensor_forest_tree_serialize_eager_fallback(tree_handle, name, ctx): tree_handle = _ops.convert_to_tensor(tree_handle, _dtypes.resource) _inputs_flat = [tree_handle] _attrs = None _result = _execute.execute(b"TensorForestTreeSerialize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TensorForestTreeSerialize", _inputs_flat, _attrs, _result) _result, = _result return _result def tensor_forest_tree_size(tree_handle, name=None): r"""Get the number of nodes in a tree Args: tree_handle: A `Tensor` of type `resource`. Handle to the tree resource. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TensorForestTreeSize", name, tree_handle) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tensor_forest_tree_size_eager_fallback( tree_handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "TensorForestTreeSize", tree_handle=tree_handle, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TensorForestTreeSize", _inputs_flat, _attrs, _result) _result, = _result return _result TensorForestTreeSize = tf_export("raw_ops.TensorForestTreeSize")(_ops.to_raw_op(tensor_forest_tree_size)) def tensor_forest_tree_size_eager_fallback(tree_handle, name, ctx): tree_handle = _ops.convert_to_tensor(tree_handle, _dtypes.resource) _inputs_flat = [tree_handle] _attrs = None _result = _execute.execute(b"TensorForestTreeSize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TensorForestTreeSize", _inputs_flat, _attrs, _result) _result, = _result return _result