EVOLUTION-MANAGER
Edit File: ragged_math_ops.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Support for ragged tensors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import gen_ragged_math_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.ragged import ragged_functional_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.ops.ragged import segment_id_ops from tensorflow.python.util import dispatch from tensorflow.python.util.tf_export import tf_export #=============================================================================== # ragged.range #=============================================================================== # pylint: disable=redefined-builtin @tf_export('ragged.range') @dispatch.add_dispatch_support def range(starts, limits=None, deltas=1, dtype=None, name=None, row_splits_dtype=dtypes.int64): """Returns a `RaggedTensor` containing the specified sequences of numbers. Each row of the returned `RaggedTensor` contains a single sequence: ```python ragged.range(starts, limits, deltas)[i] == tf.range(starts[i], limits[i], deltas[i]) ``` If `start[i] < limits[i] and deltas[i] > 0`, then `output[i]` will be an empty list. Similarly, if `start[i] > limits[i] and deltas[i] < 0`, then `output[i]` will be an empty list. This behavior is consistent with the Python `range` function, but differs from the `tf.range` op, which returns an error for these cases. Examples: >>> tf.ragged.range([3, 5, 2]).to_list() [[0, 1, 2], [0, 1, 2, 3, 4], [0, 1]] >>> tf.ragged.range([0, 5, 8], [3, 3, 12]).to_list() [[0, 1, 2], [], [8, 9, 10, 11]] >>> tf.ragged.range([0, 5, 8], [3, 3, 12], 2).to_list() [[0, 2], [], [8, 10]] The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. The vector inputs must all have the same size. Scalar inputs are broadcast to match the size of the vector inputs. Args: starts: Vector or scalar `Tensor`. Specifies the first entry for each range if `limits` is not `None`; otherwise, specifies the range limits, and the first entries default to `0`. limits: Vector or scalar `Tensor`. Specifies the exclusive upper limits for each range. deltas: Vector or scalar `Tensor`. Specifies the increment for each range. Defaults to `1`. dtype: The type of the elements of the resulting tensor. If not specified, then a value is chosen based on the other args. name: A name for the operation. row_splits_dtype: `dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of `tf.int32` or `tf.int64`. Returns: A `RaggedTensor` of type `dtype` with `ragged_rank=1`. """ row_splits_dtype = dtypes.as_dtype(row_splits_dtype) if limits is None: starts, limits = 0, starts with ops.name_scope(name, 'RaggedRange', [starts, limits, deltas]) as name: starts = ops.convert_to_tensor(starts, dtype=dtype, name='starts') limits = ops.convert_to_tensor(limits, dtype=dtype, name='limits') deltas = ops.convert_to_tensor(deltas, dtype=dtype, name='deltas') # infer dtype if not explicitly provided if dtype is None: starts, limits, deltas = _infer_matching_dtype( [starts, limits, deltas], [dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64]) result = gen_ragged_math_ops.ragged_range( starts, limits, deltas, Tsplits=row_splits_dtype, name=name) return ragged_tensor.RaggedTensor.from_row_splits( result.rt_dense_values, result.rt_nested_splits, validate=False) def _infer_matching_dtype(tensors, dtype_hierarchy): """Infers a matching dtype for tensors, and casts them to that dtype.""" assert all(t.dtype in dtype_hierarchy for t in tensors) inferred_dtype = max([t.dtype for t in tensors], key=dtype_hierarchy.index) return [math_ops.cast(t, inferred_dtype) for t in tensors] ops.no_gradient('RaggedRange') #=============================================================================== # ragged_segment_<AGGREGATE> #=============================================================================== # Docstring template used for the raggged_segment_<AGGREGATE> ops. _RAGGED_SEGMENT_DOCSTRING = """\ Computes the %(combination)s along segments of a RaggedTensor. Returns a RaggedTensor `output` with `num_segments` rows, where the row `output[i]` is formed by taking the %(combination)s of all rows of `data` whose corresponding `segment_id` is `i`. The length of the row `output[i]` will be the maximum of the lengths of all rows of `data` whose corresponding `segment_id` is `i`. If no `data` rows correspond to a given segment ID, then the output row for that segment ID will be empty. Args: data: A `RaggedTensor` containing the values to combine. segment_ids: A `Tensor` or `RaggedTensor`. Must have type `int64` or `int32`. `segment_ids.shape` must be a prefix of `data.shape`. Must be greater than or equal to zero, and less than `num_segments`. `segment_ids` is not required to be sorted. num_segments: An `int32` or `int64` scalar specifying the number of distinct segment ids. name: A name prefix for the returned tensor (optional). Returns: A `RaggedTensor` containing the %(combined)s values. The returned tensor has the same dtype as `data`, and its shape is `[num_segments] + data.shape[segment_ids.rank:]`. Raises: ValueError: If `segment_ids.shape` is not a prefix of `data.shape`. """ def _ragged_segment_aggregate(unsorted_segment_op, data, segment_ids, num_segments, separator=None, name=None): """Aggregates along segments of a RaggedTensor using `unsorted_segment_op`. Returns a RaggedTensor `output` with `num_segments` rows, where the row `output[i]` is formed by combining all rows of `data` whose corresponding `segment_id` is `i`. The values in each row are combined using `unsorted_segment_op`. The length of the row `output[i]` will be the maximum of the lengths of all rows of `data` whose corresponding `segment_id` is `i`. If no `data` rows correspond to a given segment ID, then the output row for that segment ID will be empty. Args: unsorted_segment_op: The tensorflow `op` that should be used to combine values in each row. Must have the same signature and basic behavior as `unsorted_segment_sum`, `unsorted_segment_max`, etc. data: A `RaggedTensor` containing the values to be combined. segment_ids: A `Tensor` or `RaggedTensor`. Must have type `int64` or `int32`. `segment_ids.shape` must be a prefix of `data.shape`. `segment_ids` is not required to be sorted. num_segments: An `int32` or `int64` scalar. separator: An optional string. Defaults to None. The separator to use when joining. Only used for string types. name: A name prefix for the returned tensor (optional). Returns: A `RaggedTensor` containing the aggregated values. The returned tensor has the same dtype as `data`, and its shape is `[num_segments] + data.shape[segment_ids.rank:]`. Raises: ValueError: If segment_ids.shape is not a prefix of data.shape. """ if not (ragged_tensor.is_ragged(data) or ragged_tensor.is_ragged(segment_ids)): if separator is not None: # It uses unsorted_segment_join. return unsorted_segment_op(data, segment_ids, num_segments, separator, name) else: return unsorted_segment_op(data, segment_ids, num_segments, name) with ops.name_scope(name, 'RaggedSegment', [data, segment_ids, num_segments]) as name: data = ragged_tensor.convert_to_tensor_or_ragged_tensor(data, name='data') segment_ids = ragged_tensor.convert_to_tensor_or_ragged_tensor( segment_ids, name='segment_ids') data, segment_ids = ragged_tensor.match_row_splits_dtypes(data, segment_ids) if segment_ids.dtype not in (dtypes.int32, dtypes.int64): raise ValueError('segment_ids must have dtype int32 or int64.') if ragged_tensor.is_ragged(segment_ids): if not ragged_tensor.is_ragged(data): raise ValueError('segment_ids.shape must be a prefix of data.shape, ' 'but segment_ids is ragged and data is not.') check_splits = check_ops.assert_equal( segment_ids.row_splits, data.row_splits, message='segment_ids.shape must be a prefix of data.shape') with ops.control_dependencies([check_splits]): return _ragged_segment_aggregate(unsorted_segment_op, data.values, segment_ids.values, num_segments, separator) # Find the length of each row in data. (shape=[data_nrows]) data_row_lengths = data.row_splits[1:] - data.row_splits[:-1] # Find the length that each output row will have. The length of the row # corresponding to segment `id` is `max(data_row_lengths[i])` where # `segment_ids[i]=id`. (shape=[output_nrows]) output_row_lengths = math_ops.maximum( math_ops.unsorted_segment_max(data_row_lengths, segment_ids, num_segments), 0) # Build the splits tensor for the output RaggedTensor. output_splits = array_ops.concat([ array_ops.zeros([1], output_row_lengths.dtype), math_ops.cumsum(output_row_lengths) ], axis=0) # For each row in `data`, find the start & limit position where that row's # values will be aggregated in output.values. data_row_to_out_row_start = array_ops.gather(output_splits, segment_ids) data_row_to_out_row_limit = data_row_to_out_row_start + data_row_lengths # For each value in `data.values`, find the position where it will # aggregated in `output.values`. # Get the target output values index for each data values index. data_val_to_out_val_index = range(data_row_to_out_row_start, data_row_to_out_row_limit).values # Recursively aggregate the values. output_values = _ragged_segment_aggregate(unsorted_segment_op, data.values, data_val_to_out_val_index, output_splits[-1], separator) return ragged_tensor.RaggedTensor.from_row_splits( output_values, output_splits, validate=False) def segment_sum(data, segment_ids, num_segments, name=None): # For docs, see: _RAGGED_SEGMENT_DOCSTRING return _ragged_segment_aggregate( math_ops.unsorted_segment_sum, data=data, segment_ids=segment_ids, num_segments=num_segments, name=(name or 'RaggedSegmentSum')) def segment_prod(data, segment_ids, num_segments, name=None): # For docs, see: _RAGGED_SEGMENT_DOCSTRING return _ragged_segment_aggregate( math_ops.unsorted_segment_prod, data=data, segment_ids=segment_ids, num_segments=num_segments, name=(name or 'RaggedSegmentProd')) def segment_min(data, segment_ids, num_segments, name=None): # For docs, see: _RAGGED_SEGMENT_DOCSTRING return _ragged_segment_aggregate( math_ops.unsorted_segment_min, data=data, segment_ids=segment_ids, num_segments=num_segments, name=(name or 'RaggedSegmentMin')) def segment_max(data, segment_ids, num_segments, name=None): # For docs, see: _RAGGED_SEGMENT_DOCSTRING return _ragged_segment_aggregate( math_ops.unsorted_segment_max, data=data, segment_ids=segment_ids, num_segments=num_segments, name=(name or 'RaggedSegmentMax')) def segment_mean(data, segment_ids, num_segments, name=None): """For docs, see: _RAGGED_SEGMENT_DOCSTRING.""" with ops.name_scope(name, 'RaggedSegmentMean', [data, segment_ids, num_segments]): total = segment_sum(data, segment_ids, num_segments) ones = ragged_tensor.RaggedTensor.from_nested_row_splits( array_ops.ones_like(data.flat_values), data.nested_row_splits, validate=False) count = segment_sum(ones, segment_ids, num_segments) if ragged_tensor.is_ragged(total): return total.with_flat_values(total.flat_values / count.flat_values) else: return total / count def segment_sqrt_n(data, segment_ids, num_segments, name=None): """For docs, see: _RAGGED_SEGMENT_DOCSTRING.""" with ops.name_scope(name, 'RaggedSegmentSqrtN', [data, segment_ids, num_segments]): total = segment_sum(data, segment_ids, num_segments) ones = ragged_tensor.RaggedTensor.from_nested_row_splits( array_ops.ones_like(data.flat_values), data.nested_row_splits, validate=False) count = segment_sum(ones, segment_ids, num_segments) if ragged_tensor.is_ragged(total): return total.with_flat_values(total.flat_values / math_ops.sqrt(count.flat_values)) else: return total / math_ops.sqrt(count) def _set_ragged_segment_docstring(func, combination, combined): func.__doc__ = _RAGGED_SEGMENT_DOCSTRING % dict( combination=combination, combined=combined) _set_ragged_segment_docstring(segment_sum, 'sum', 'summed') _set_ragged_segment_docstring(segment_prod, 'product', 'multiplied') _set_ragged_segment_docstring(segment_min, 'minimum', 'minimized') _set_ragged_segment_docstring(segment_max, 'maximum', 'maximized') _set_ragged_segment_docstring(segment_mean, 'mean', 'averaged') _set_ragged_segment_docstring(segment_sqrt_n, 'sum divided by sqrt(N)', 'summed') #=============================================================================== # ragged_reduce_<AGGREGATE> #=============================================================================== # Docstring template used for ragged_reduce_<AGGREGATE> ops. _RAGGED_REDUCE_DOCSTRING = """\ Computes the %(combination)s of elements across dimensions of a `RaggedTensor`. Reduces `input_tensor` along the dimensions given in `axis` by taking the %(combination)s of values. If a reduced dimension has no elements for some index, then the value for that index will be %(default)s. The rank of the tensor is reduced by `1` for each entry in `axis`. If `axis` is not specified, then all dimensions are reduced, and a scalar value is returned. Args: input_tensor: A `RaggedTensor` containing the values to be %(combined)s. axis: The dimensions to reduce. May be `None` (to reduce all axes), an `int` (to reduce a single axis), a `list` or `tuple` of `int` (to reduce a given set of axes), or a `Tensor` with a constant value. Must be in the range `[0, input_tensor.rank]`. name: A name prefix for the returned tensor (optional). Returns: A `RaggedTensor` containing the %(combined)s values. The returned tensor has the same dtype as `data`, and its shape is given by removing the dimensions specified in `axis` from `input_tensor.shape`. The `ragged_rank` of the returned tensor is given by substracting any ragged dimensions specified in `axis` from `input_tensor.ragged_rank`. Raises: ValueError: If `axis` contains a `Tensor` whose value is not constant. ####Example: %(example)s """ _RAGGED_REDUCE_SUM_EXAMPLE = """ >>> rt = tf.ragged.constant([[3, 1, 4], [1, 5], [9], [2, 6]]) >>> tf.reduce_sum(rt, axis=0).numpy() # = [3+1+9+2, 1+5+6, 4] array([15, 12, 4], dtype=int32) >>> tf.reduce_sum(rt, axis=1).numpy() # = [3+1+4, 1+5, 9, 2+6] array([8, 6, 9, 8], dtype=int32) """ _RAGGED_REDUCE_PROD_EXAMPLE = """ >>> rt = tf.ragged.constant([[3, 1, 4], [1, 5], [9], [2, 6]]) >>> tf.reduce_prod(rt, axis=0).numpy() # = [3*1*9*2, 1*5*6, 4] array([54, 30, 4], dtype=int32) >>> tf.reduce_prod(rt, axis=1).numpy() # = [3*1*4, 1*5, 9, 2*6] array([12, 5, 9, 12], dtype=int32) """ _RAGGED_REDUCE_MIN_EXAMPLE = """ >>> rt = tf.ragged.constant([[3, 1, 4], [1, 5], [9], [2, 6]]) >>> tf.reduce_min(rt, axis=0).numpy() array([1, 1, 4], dtype=int32) >>> tf.reduce_min(rt, axis=1).numpy() array([1, 1, 9, 2], dtype=int32) """ _RAGGED_REDUCE_MAX_EXAMPLE = """ >>> rt = tf.ragged.constant([[3, 1, 4], [1, 5], [9], [2, 6]]) >>> tf.reduce_max(rt, axis=0).numpy() array([9, 6, 4], dtype=int32) >>> tf.reduce_max(rt, axis=1).numpy() array([4, 5, 9, 6], dtype=int32) """ _RAGGED_REDUCE_MEAN_EXAMPLE = """ >>> rt = tf.ragged.constant([[3, 1, 4], [1, 5], [9], [2, 6]]) >>> tf.reduce_mean(rt, axis=0).numpy() array([3.75, 4. , 4. ]) >>> tf.reduce_mean(rt, axis=1).numpy() array([2.66666667, 3. , 9. , 4. ]) """ _RAGGED_REDUCE_ALL_EXAMPLE = """ >>> rt = tf.ragged.constant([[True, True], [True, True, False, True], [False, True]]) >>> tf.reduce_all(rt, axis=0).numpy() array([False, True, False, True]) >>> tf.reduce_all(rt, axis=1).numpy() array([ True, False, False]) """ _RAGGED_REDUCE_ANY_EXAMPLE = """ >>> rt = tf.ragged.constant([[True, True], [True, True, False, True], [False, True]]) >>> tf.reduce_any(rt, axis=0).numpy() array([ True, True, False, True]) >>> tf.reduce_any(rt, axis=1).numpy() array([ True, True, True]) """ def ragged_reduce_aggregate(reduce_op, unsorted_segment_op, rt_input, axis, keepdims, separator=None, name=None): """Aggregates across axes of a RaggedTensor using the given `Tensor` ops. Reduces `rt_input` along the dimensions given in `axis`. The rank of the tensor is reduced by 1 for each entry in `axis`. If `axis` is not specified, then all dimensions are reduced, and a scalar value is returned. This op assumes that `reduce_op` and `unsorted_segment_op` are associative; if not, then reducing multiple axes will return incorrect results. (In particular, reducing multiple axes is currently implemented by reducing the axes one at a time.) Args: reduce_op: The tensorflow `op` that should be used to reduce values in uniform dimensions. Must have the same signature and basic behavior as `reduce_sum`, `reduce_max`, etc. unsorted_segment_op: The tensorflow `op` that should be used to combine values in ragged dimensions. Must have the same signature and basic behavior as `unsorted_segment_sum`, `unsorted_segment_max`, etc. rt_input: A `Tensor` or `RaggedTensor` containing the values to be reduced. axis: The axis or axes to reduce. May be `None` (to reduce all axes), an `int` (to reduce a single axis), a `list` or `tuple` of `int` (to reduce a given set of axes), or a `Tensor` with a constant value. Must be in the range `[0, rt_input.rank)`. keepdims: If true, retains reduced dimensions with length 1. separator: An optional string. Defaults to None. The separator to use when joining. The separator must not be set for non-string data types. (i.e. if separator is not None then it uses string ops) name: A name prefix for the returned tensor (optional). Returns: A `RaggedTensor` containing the reduced values. The returned tensor has the same dtype as `data`, and its shape is given by removing the dimensions specified in `axis` from `rt_input.shape`. The `ragged_rank` of the returned tensor is given by substracting any ragged dimensions specified in `axis` from `rt_input.ragged_rank`. Raises: ValueError: If `axis` contains a `Tensor` whose value is not constant. """ if not ragged_tensor.is_ragged(rt_input): if separator is None: return reduce_op(rt_input, axis, keepdims=keepdims, name=name) else: # When separator is not None, We infer that dtype is string and # reduce_join will be called. return reduce_op( rt_input, axis, keepdims=keepdims, name=name, separator=separator) if isinstance(axis, ops.Tensor): axis = tensor_util.constant_value(axis) if axis is None: raise ValueError('axis must be known at graph construction time.') if isinstance(axis, np.ndarray): axis = axis.tolist() # When reducing all axes, just ignore splits & reduce the inner values. if axis is None: result = reduce_op(rt_input.flat_values, None, keepdims=keepdims, name=name) if keepdims: # Expand the result to the input number of dimensions. for _ in rt_input.shape[1:]: result = array_ops.expand_dims(result, axis=0) return result with ops.name_scope(name, 'RaggedReduce', [rt_input, axis]): if isinstance(axis, (tuple, list)): if not axis: return rt_input elif len(axis) == 1: axis = axis[0] else: # When reducing multiple axes, as we reduce one at a time (see below), # the negative axis has to be converted to positive at the first run # as the sort with negative axis will have different orders. # See GitHub issue 27497. axis = [ array_ops.get_positive_axis(a, rt_input.shape.ndims, 'axis[%s]' % i, 'rank(input_tensor)') for i, a in enumerate(axis) ] # When reducing multiple axes, just reduce one at a time. This is less # efficient, and only works for associative ops. (In particular, it # does not work for reduce_mean.) However, reducing multiple axes at # once will probably require a nontrivial c++ op. axis = sorted(axis) inner_reduced = ragged_reduce_aggregate(reduce_op, unsorted_segment_op, rt_input, axis[-1], keepdims, separator) return ragged_reduce_aggregate(reduce_op, unsorted_segment_op, inner_reduced, axis[:-1], keepdims, separator) rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor( rt_input, name='rt_input') axis = array_ops.get_positive_axis( axis, rt_input.shape.ndims, ndims_name='rank(input_tensor)') if axis == 0: # out[i_1, i_2, ..., i_N] = sum_{j} rt_input[j, i_1, i_2, ..., i_N] row_lengths = rt_input.row_splits[1:] - rt_input.row_splits[:-1] num_segments = math_ops.maximum(math_ops.reduce_max(row_lengths), 0) segment_ids = range(row_lengths).values result = _ragged_segment_aggregate(unsorted_segment_op, rt_input.values, segment_ids, num_segments, separator) if keepdims: result = array_ops.expand_dims(result, axis=0) return result elif axis == 1: # out[i_0, i_1, i_2, ..., i_N] = sum_{j} rt_input[i_0, j, i_2, ..., i_N] num_segments = array_ops.shape(rt_input.row_splits)[0] - 1 segment_ids = segment_id_ops.row_splits_to_segment_ids( rt_input.row_splits) result = _ragged_segment_aggregate(unsorted_segment_op, rt_input.values, segment_ids, num_segments, separator) if keepdims: result = array_ops.expand_dims(result, axis=1) return result else: # out[i_0, ..., i_[axis-1], i_axis+1], ..., i_N] = # sum_{j} rt_input [i_0, ..., i_[axis-1], j, i_axis+1], ..., i_N] return rt_input.with_values( ragged_reduce_aggregate(reduce_op, unsorted_segment_op, rt_input.values, axis - 1, keepdims, separator)) def reduce_sum(input_tensor, axis=None, keepdims=None, name=None): """For docs, see: _RAGGED_REDUCE_DOCSTRING.""" return ragged_reduce_aggregate( reduce_op=math_ops.reduce_sum, unsorted_segment_op=math_ops.unsorted_segment_sum, rt_input=input_tensor, axis=axis, keepdims=keepdims, name=(name or 'RaggedReduceSum')) def reduce_prod(input_tensor, axis=None, keepdims=None, name=None): """For docs, see: _RAGGED_REDUCE_DOCSTRING.""" return ragged_reduce_aggregate( reduce_op=math_ops.reduce_prod, unsorted_segment_op=math_ops.unsorted_segment_prod, rt_input=input_tensor, axis=axis, keepdims=keepdims, name=(name or 'RaggedReduceProd')) def reduce_min(input_tensor, axis=None, keepdims=None, name=None): """For docs, see: _RAGGED_REDUCE_DOCSTRING.""" return ragged_reduce_aggregate( reduce_op=math_ops.reduce_min, unsorted_segment_op=math_ops.unsorted_segment_min, rt_input=input_tensor, axis=axis, keepdims=keepdims, name=(name or 'RaggedReduceMin')) def reduce_max(input_tensor, axis=None, keepdims=None, name=None): """For docs, see: _RAGGED_REDUCE_DOCSTRING.""" return ragged_reduce_aggregate( reduce_op=math_ops.reduce_max, unsorted_segment_op=math_ops.unsorted_segment_max, rt_input=input_tensor, axis=axis, keepdims=keepdims, name=(name or 'RaggedReduceMax')) def reduce_mean(input_tensor, axis=None, keepdims=None, name=None): """For docs, see: _RAGGED_REDUCE_DOCSTRING.""" with ops.name_scope(name, 'RaggedReduceMean', [input_tensor, axis]): total = reduce_sum(input_tensor, axis, keepdims) if ragged_tensor.is_ragged(input_tensor): ones = ragged_tensor.RaggedTensor.from_nested_row_splits( array_ops.ones_like(input_tensor.flat_values), input_tensor.nested_row_splits, validate=False) else: ones = array_ops.ones_like(input_tensor) count = reduce_sum(ones, axis, keepdims) if ragged_tensor.is_ragged(total): return ragged_tensor.RaggedTensor.from_nested_row_splits( total.flat_values / count.flat_values, total.nested_row_splits, validate=False) else: return total / count def _cast(input_tensor, dtype): return ragged_functional_ops.map_flat_values(math_ops.cast, input_tensor, dtype) def reduce_all(input_tensor, axis=None, keepdims=None, name=None): """For docs, see: _RAGGED_REDUCE_DOCSTRING.""" with ops.name_scope(name, 'RaggedReduceAll', [input_tensor, axis]): return _cast( reduce_prod(_cast(input_tensor, dtypes.int32), axis, keepdims), dtypes.bool) def reduce_any(input_tensor, axis=None, keepdims=None, name=None): """For docs, see: _RAGGED_REDUCE_DOCSTRING.""" with ops.name_scope(name, 'RaggedReduceAny', [input_tensor, axis]): return _cast( reduce_sum(_cast(input_tensor, dtypes.int32), axis, keepdims), dtypes.bool) def _set_ragged_reduce_docstring(func, combination, combined, default, example): func.__doc__ = _RAGGED_REDUCE_DOCSTRING % dict( combination=combination, combined=combined, default=default, example=example) _set_ragged_reduce_docstring(reduce_sum, 'sum', 'summed', '0', _RAGGED_REDUCE_SUM_EXAMPLE) _set_ragged_reduce_docstring(reduce_prod, 'product', 'multiplied', '1', _RAGGED_REDUCE_PROD_EXAMPLE) _set_ragged_reduce_docstring(reduce_min, 'minimum', 'minimized', '`input_tensor.dtype.min`', _RAGGED_REDUCE_MIN_EXAMPLE) _set_ragged_reduce_docstring(reduce_max, 'maximum', 'maximized', '`input_tensor.dtype.max`', _RAGGED_REDUCE_MAX_EXAMPLE) _set_ragged_reduce_docstring(reduce_mean, 'mean', 'averaged', 'NaN', _RAGGED_REDUCE_MEAN_EXAMPLE) _set_ragged_reduce_docstring(reduce_all, 'logical and', 'and-ed', 'True', _RAGGED_REDUCE_ALL_EXAMPLE) _set_ragged_reduce_docstring(reduce_any, 'logical or', 'or-ed', 'False', _RAGGED_REDUCE_ANY_EXAMPLE)