EVOLUTION-MANAGER
Edit File: ragged_functional_ops.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Support for ragged tensors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import math_ops from tensorflow.python.ops.ragged import ragged_config from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.ops.ragged import ragged_util from tensorflow.python.util import dispatch from tensorflow.python.util.tf_export import tf_export @tf_export("ragged.map_flat_values") @dispatch.add_dispatch_support def map_flat_values(op, *args, **kwargs): """Applies `op` to the values of one or more RaggedTensors. Replaces any `RaggedTensor` in `args` or `kwargs` with its `flat_values` tensor, and then calls `op`. Returns a `RaggedTensor` that is constructed from the input `RaggedTensor`s' `nested_row_splits` and the value returned by the `op`. If the input arguments contain multiple `RaggedTensor`s, then they must have identical `nested_row_splits`. Examples: >>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]]) >>> map_flat_values(tf.ones_like, rt).to_list() [[1, 1, 1], [], [1, 1], [1]] >>> map_flat_values(tf.multiply, rt, rt).to_list() [[1, 4, 9], [], [16, 25], [36]] >>> map_flat_values(tf.add, rt, 5).to_list() [[6, 7, 8], [], [9, 10], [11]] Args: op: The operation that should be applied to the RaggedTensor `flat_values`. `op` is typically an element-wise operation (such as math_ops.add), but any operation that preserves the size of the outermost dimension can be used. I.e., `shape[0]` of the value returned by `op` must match `shape[0]` of the `RaggedTensor`s' `flat_values` tensors. *args: Arguments for `op`. **kwargs: Keyword arguments for `op`. Returns: A `RaggedTensor` whose `ragged_rank` matches the `ragged_rank` of all input `RaggedTensor`s. Raises: ValueError: If args contains no `RaggedTensors`, or if the `nested_splits` of the input `RaggedTensor`s are not identical. """ # Replace RaggedTensors with their values; and collect the splits tensors # from each RaggedTensor. nested_splits_lists = [] flat_values_nrows = [] inner_args = _replace_ragged_with_flat_values(args, nested_splits_lists, flat_values_nrows) inner_kwargs = _replace_ragged_with_flat_values(kwargs, nested_splits_lists, flat_values_nrows) if not nested_splits_lists: return op(*args, **kwargs) if flat_values_nrows: flat_values_nrows = set(flat_values_nrows) if len(flat_values_nrows) != 1: raise ValueError("Input RaggedTensors' flat_values must all have the " "same outer-dimension size. Got sizes: %s" % flat_values_nrows) flat_values_nrows = flat_values_nrows.pop() # Get the single element else: flat_values_nrows = None split_dtypes = set(splits[0].dtype for splits in nested_splits_lists) if len(split_dtypes) > 1: if not ragged_config.auto_cast_partition_dtype(): raise ValueError("Input RaggedTensors have mismatched row_splits dtypes; " "use RaggedTensor.with_row_splits_dtype() to convert " "them to compatible dtypes.") nested_splits_lists = [ [math_ops.cast(s, dtypes.int64) for s in nested_splits] # pylint: disable=g-complex-comprehension for nested_splits in nested_splits_lists] with ops.control_dependencies( ragged_util.assert_splits_match(nested_splits_lists)): # Delegate to `op` op_output = op(*inner_args, **inner_kwargs) # Check that the result has the expected shape (if known). if flat_values_nrows is not None: if not op_output.shape[:1].is_compatible_with([flat_values_nrows]): raise ValueError( "tf.ragged.map_flat_values requires that the output of `op` have " "the same outer-dimension size as flat_values of any ragged " "inputs. (output shape: %s; expected outer dimension size: %s)" % (op_output.shape, flat_values_nrows)) # Compose the result from the transformed values and the splits. return ragged_tensor.RaggedTensor.from_nested_row_splits( op_output, nested_splits_lists[0], validate=False) def _replace_ragged_with_flat_values(value, nested_splits_lists, flat_values_nrows): """Replace RaggedTensors with their flat_values, and record their splits. Returns a copy of `value`, with any nested `RaggedTensor`s replaced by their `flat_values` tensor. Looks inside lists, tuples, and dicts. Appends each `RaggedTensor`'s `nested_splits` to `nested_splits_lists`. Args: value: The value that should be transformed by replacing `RaggedTensors`. nested_splits_lists: An output parameter used to record the `nested_splits` for any `RaggedTensors` that were replaced. flat_values_nrows: An output parameter used to record the outer dimension size for each replacement `flat_values` (when known). Contains a list of int. Returns: A copy of `value` with nested `RaggedTensors` replaced by their `values`. """ # Base case if ragged_tensor.is_ragged(value): value = ragged_tensor.convert_to_tensor_or_ragged_tensor(value) nested_splits_lists.append(value.nested_row_splits) nrows = tensor_shape.dimension_at_index(value.flat_values.shape, 0).value if nrows is not None: flat_values_nrows.append(nrows) return value.flat_values # Recursion cases def recurse(v): return _replace_ragged_with_flat_values(v, nested_splits_lists, flat_values_nrows) if isinstance(value, list): return [recurse(v) for v in value] elif isinstance(value, tuple): return tuple(recurse(v) for v in value) elif isinstance(value, dict): return dict((k, recurse(v)) for (k, v) in value.items()) else: return value