EVOLUTION-MANAGER
Edit File: ragged_array_ops.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Array operations for RaggedTensors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import gen_ragged_array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import sort_ops from tensorflow.python.ops.ragged import ragged_functional_ops from tensorflow.python.ops.ragged import ragged_math_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.ops.ragged import ragged_util from tensorflow.python.ops.ragged import segment_id_ops from tensorflow.python.util import dispatch from tensorflow.python.util.tf_export import tf_export #=============================================================================== # Masking #=============================================================================== @tf_export('ragged.boolean_mask') @dispatch.add_dispatch_support def boolean_mask(data, mask, name=None): """Applies a boolean mask to `data` without flattening the mask dimensions. Returns a potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`. * `output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]` Where `j` is the `i`th `True` entry of `mask[a1...aA]`. Note that `output` preserves the mask dimensions `a1...aA`; this differs from `tf.boolean_mask`, which flattens those dimensions. Args: data: A potentially ragged tensor. mask: A potentially ragged boolean tensor. `mask`'s shape must be a prefix of `data`'s shape. `rank(mask)` must be known statically. name: A name prefix for the returned tensor (optional). Returns: A potentially ragged tensor that is formed by retaining the elements in `data` where the corresponding value in `mask` is `True`. * `rank(output) = rank(data)`. * `output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)`. Raises: ValueError: if `rank(mask)` is not known statically; or if `mask.shape` is not a prefix of `data.shape`. #### Examples: >>> # Aliases for True & False so data and mask line up. >>> T, F = (True, False) >>> tf.ragged.boolean_mask( # Mask a 2D Tensor. ... data=[[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... mask=[[T, F, T], [F, F, F], [T, F, F]]).to_list() [[1, 3], [], [7]] >>> tf.ragged.boolean_mask( # Mask a 2D RaggedTensor. ... tf.ragged.constant([[1, 2, 3], [4], [5, 6]]), ... tf.ragged.constant([[F, F, T], [F], [T, T]])).to_list() [[3], [], [5, 6]] >>> tf.ragged.boolean_mask( # Mask rows of a 2D RaggedTensor. ... tf.ragged.constant([[1, 2, 3], [4], [5, 6]]), ... tf.ragged.constant([True, False, True])).to_list() [[1, 2, 3], [5, 6]] """ with ops.name_scope(name, 'RaggedMask', [data, mask]): # Convert inputs to tensors. data = ragged_tensor.convert_to_tensor_or_ragged_tensor(data, name='data') mask = ragged_tensor.convert_to_tensor_or_ragged_tensor( mask, dtypes.bool, name='mask') row_splits_dtype, (data, mask) = ragged_tensor.match_row_splits_dtypes( data, mask, return_dtype=True) # Get static rank of mask. if mask.shape.ndims is None: raise ValueError('mask.shape.ndims must be known statically.') elif mask.shape.ndims == 0: raise ValueError('mask cannot be scalar.') # If mask is ragged, then recurse with a non-ragged mask. if ragged_tensor.is_ragged(mask): if not ragged_tensor.is_ragged(data): data = ragged_tensor.RaggedTensor.from_tensor( data, ragged_rank=mask.ragged_rank, row_splits_dtype=mask.row_splits.dtype) # Check that mask.nested_row_splits is a prefix of # data.nested_row_splits. splits_list = [ mask.nested_row_splits, data.nested_row_splits[:mask.ragged_rank] ] with ops.control_dependencies( ragged_util.assert_splits_match(splits_list)): # Strip off ragged `splits` until `mask` is non-ragged. Keep the splits # that we strip off in `splits`, so we can add them back on after # we recursively mask the non-ragged data. splits = [] while ragged_tensor.is_ragged(mask): if mask.shape.ndims > 2: splits.append(mask.row_splits) else: # Count the number of True mask values in each row to find the # lengths of the filtered rows; then convert to splits. int_mask = ragged_functional_ops.map_flat_values( math_ops.cast, mask, dtype=row_splits_dtype) masked_row_lengths = ragged_math_ops.reduce_sum(int_mask, axis=1) splits.append(ragged_util.lengths_to_splits(masked_row_lengths)) mask = mask.values data = data.values # Recursively apply the nested non-ragged mask to the nested data. masked_values = boolean_mask(data, mask) # Add the ragged `splits` back to the result. masked_values = ragged_tensor.RaggedTensor.from_nested_row_splits( masked_values, splits, validate=False) return masked_values # If mask is non-ragged and has rank 1, and data is ragged, then build a # ragged tensor with the indicated rows. elif ragged_tensor.is_ragged(data) and mask.shape.ndims == 1: # Get the masked splits: first get the length of each row, then filter # out the rows that we are deleting, and convert that filtered set of # masks back to a splits tensor. lengths = data.row_lengths() masked_lengths = array_ops.boolean_mask(lengths, mask) masked_splits = ragged_util.lengths_to_splits(masked_lengths) # Get the masked values: first get row ids corresponding to each # value, then use tf.gather to build a boolean mask that's false for # values that come from rows that we are deleting, and use that mask to # construct the masked values tensor. segment_ids = segment_id_ops.row_splits_to_segment_ids(data.row_splits) segment_mask = array_ops.gather(mask, segment_ids) masked_values = boolean_mask(data.values, segment_mask) return ragged_tensor.RaggedTensor.from_row_splits( masked_values, masked_splits, validate=False) # If mask is non-ragged and has rank>1, then convert it to be ragged, # with a ragged rank matching data. if ragged_tensor.is_ragged(data): mask = ragged_tensor.RaggedTensor.from_tensor( mask, ragged_rank=min(data.ragged_rank, mask.shape.ndims - 1), row_splits_dtype=data.row_splits.dtype) return boolean_mask(data, mask) # Otherwise, data and mask are both `Tensor`s. else: # Apply `boolean_mask` to get the masked values. masked_values = array_ops.boolean_mask(data, mask) if mask.shape.ndims >= 2: # Add the innermost ragged dimension. For each innermost cell, get the # number of values it contains. Then flatten that to get a list of # cell lengths, and convert it to splits. Finally, combine the splits # and values to get the innermost ragged tensor. masked_lengths = math_ops.count_nonzero( mask, axis=-1, dtype=row_splits_dtype) flattened_masked_lengths = array_ops.reshape(masked_lengths, [-1]) masked_values = ragged_tensor.RaggedTensor.from_row_lengths( masked_values, flattened_masked_lengths, validate=False) # Wrap remaining ragged dimensions. if mask.shape.ndims > 2: mask_shape = array_ops.shape(mask, out_type=row_splits_dtype) split_size = math_ops.cumprod(mask_shape) + 1 for dim in range(mask.shape.ndims - 3, -1, -1): elt_size = mask_shape[dim + 1] masked_splits = math_ops.range(split_size[dim]) * elt_size masked_values = ragged_tensor.RaggedTensor.from_row_splits( masked_values, masked_splits, validate=False) return masked_values #=============================================================================== # Tiling #=============================================================================== def tile(input, multiples, name=None): # pylint: disable=redefined-builtin """Constructs a `RaggedTensor` by tiling a given `RaggedTensor`. The values of `input` are replicated `multiples[i]` times along the `i`th dimension (for each dimension `i`). For every dimension `axis` in `input`, the length of each output element in that dimension is the length of corresponding input element multiplied by `multiples[axis]`. Args: input: A `RaggedTensor`. multiples: A 1-D integer `Tensor`. Length must be the same as the number of dimensions in `input`. name: A name for the operation (optional). Returns: A `RaggedTensor` with the same type, rank, and ragged_rank as `input`. #### Example: >>> rt = tf.ragged.constant([[1, 2], [3]]) >>> tf.tile(rt, [3, 2]).to_list() [[1, 2, 1, 2], [3, 3], [1, 2, 1, 2], [3, 3], [1, 2, 1, 2], [3, 3]] """ with ops.name_scope(name, 'RaggedTile', [input, multiples]): input = ragged_tensor.convert_to_tensor_or_ragged_tensor( input, name='input') if not ragged_tensor.is_ragged(input): return array_ops.tile(input, multiples, name) multiples = ragged_util.convert_to_int_tensor( multiples, name='multiples', dtype=input.row_splits.dtype) multiples.shape.assert_has_rank(1) # If the constant value of `multiples` is available, then we can use it # to skip tiling dimensions where `multiples=1`. const_multiples = tensor_util.constant_value(multiples) return ragged_tensor.RaggedTensor.from_nested_row_splits( _tile_ragged_values(input, multiples, const_multiples), _tile_ragged_splits(input, multiples, const_multiples), validate=False) def _tile_ragged_values(rt_input, multiples, const_multiples=None): """Builds flat_values tensor for a tiled `RaggedTensor`. Returns a tensor that repeats the values in `rt_input.flat_values` in the appropriate pattern to construct a `RaggedTensor` that tiles `rt_input` as specified by `multiples`. Args: rt_input: The `RaggedTensor` whose values should be repeated. multiples: A 1-D integer `tensor`, indicating how many times each dimension should be repeated. const_multiples: Optional constant value for multiples. Used to skip tiling dimensions where `multiples=1`. Returns: A `Tensor` with the same type and rank as `rt_input.flat_values`. #### Example: >>> rt = tf.ragged.constant([[1, 2], [3]]) >>> _tile_ragged_values(rt, tf.constant([3, 2])).numpy() array([1, 2, 1, 2, 3, 3, 1, 2, 1, 2, 3, 3, 1, 2, 1, 2, 3, 3], dtype=int32) """ ragged_rank = rt_input.ragged_rank nested_splits = rt_input.nested_row_splits # Pointers to the values in `rt_input.flat_values`. inner_value_ids = math_ops.range(nested_splits[-1][-1]) # For each ragged dimension (working from the innermost to outermost), # expand `inner_value_ids` as necessary to tile that dimension. prev_splits = None for axis in range(ragged_rank, 0, -1): # Ragged splits for this dimension. splits = nested_splits[axis - 1] # Adjust splits so they point into `inner_value_ids` (instead of just # pointing into the next dimension's values). if prev_splits is not None: # Not the first pass through the loop. splits = array_ops.gather(prev_splits * multiples[axis + 1], splits) # Repeat each element in this ragged dimension `multiples[axis]` times. if const_multiples is None or const_multiples[axis] != 1: inner_value_ids = ragged_util.repeat_ranges(inner_value_ids, splits, multiples[axis]) prev_splits = splits # Gather the tiled inner values. ragged_tiled_values = array_ops.gather(rt_input.flat_values, inner_value_ids) # Tile the flat_values for the uniform dimensions (i.e., for `axis=0` plus # `axis=range(ragged_rank, rank)`). inner_repeats = array_ops.concat([multiples[:1], multiples[ragged_rank + 1:]], axis=0) return array_ops.tile(ragged_tiled_values, inner_repeats) def _tile_ragged_splits(rt_input, multiples, const_multiples=None): """Builds nested_split tensors for a tiled `RaggedTensor`. Returns a list of split tensors that can be used to construct the `RaggedTensor` that tiles `rt_input` as specified by `multiples`. Args: rt_input: The `RaggedTensor` that is being tiled. multiples: A 1-D integer `tensor`, indicating how many times each dimension should be repeated. const_multiples: Optional constant value for multiples. Used to skip tiling dimensions where `multiples=1`. Returns: A list of 1-D integer `Tensor`s (one for each ragged dimension in `rt_input`). #### Example: >>> rt = tf.ragged.constant([[1, 2], [3]]) >>> _tile_ragged_splits(rt, [3, 2]) [<tf.Tensor: shape=(7,), dtype=int64, numpy=array([ 0, 4, 6, 10, 12, 16, 18])>] """ ragged_rank = rt_input.ragged_rank nested_splits = rt_input.nested_row_splits # projected_splits[src_axis, dst_axis] contains the split points that divide # the rows from src_axis in the list of dst_axis values. E.g., # projected_splits[i, i] = nested_splits[i], and # projected_splits[i, i+1] = gather(nested_splits[i+1], nested_splits[i]). projected_splits = [{i: nested_splits[i]} for i in range(ragged_rank)] for src_axis in range(ragged_rank): for dst_axis in range(src_axis + 1, ragged_rank - 1): projected_splits[src_axis][dst_axis] = array_ops.gather( nested_splits[dst_axis], projected_splits[src_axis][dst_axis - 1]) # For each ragged dimension: nested_splits[axis] -> result_splits[axis]. result_splits = [] for axis in range(ragged_rank): # Get the length of each row for the input tensor for this dimension. input_lengths = nested_splits[axis][1:] - nested_splits[axis][:-1] # Multiply those lengths by the `multiples` of dimension axis+1, since # each value will be repeated that number of times. output_lengths = input_lengths * multiples[axis + 1] # Repeat ranges of the row lengths as necessary for them to be tiled in # each ragged dimension `d < axis`. (Start with dimension d=axis-1, and # work our way up to dimension d=0.) repeats = 1 for d in range(axis - 1, -1, -1): if const_multiples is None or const_multiples[d + 1] != 1: splits = projected_splits[d][axis - 1] * repeats output_lengths = ragged_util.repeat_ranges(output_lengths, splits, multiples[d + 1]) repeats *= multiples[d + 1] # Tile splits for the outermost (uniform) dimension. output_lengths = array_ops.tile(output_lengths, multiples[:1]) # Convert to splits. result_splits.append(ragged_util.lengths_to_splits(output_lengths)) return result_splits #=============================================================================== # Reshaping #=============================================================================== def expand_dims(input, axis, name=None): # pylint: disable=redefined-builtin """Inserts a dimension with shape 1 into a potentially ragged tensor's shape. Given a potentially ragged tenor `input`, this operation inserts a dimension with size 1 at the dimension `axis` of `input`'s shape. The following table gives some examples showing how `ragged.expand_dims` impacts the shapes of different input tensors. Ragged dimensions are indicated by enclosing them in parentheses. input.shape | axis | result.shape ----------------------- | ---- | ----------------------------- `[D1, D2]` | `0` | `[1, D1, D2]` `[D1, D2]` | `1` | `[D1, 1, D2]` `[D1, D2]` | `2` | `[D1, D2, 1]` `[D1, (D2), (D3), D4]` | `0` | `[1, D1, (D2), (D3), D4]` `[D1, (D2), (D3), D4]` | `1` | `[D1, 1, (D2), (D3), D4]` `[D1, (D2), (D3), D4]` | `2` | `[D1, (D2), 1, (D3), D4]` `[D1, (D2), (D3), D4]` | `3` | `[D1, (D2), (D3), 1, D4]` `[D1, (D2), (D3), D4]` | `4` | `[D1, (D2), (D3), D4, 1]` Args: input: The potentially tensor that should be expanded with a new dimension. axis: An integer constant indicating where the new dimension should be inserted. name: A name for the operation (optional). Returns: A tensor with the same values as `input`, with an added dimension of size 1 at `axis`. #### Examples: >>> rt = tf.ragged.constant([[1, 2], [3]]) >>> print(rt.shape) (2, None) >>> expanded = tf.expand_dims(rt, axis=0) >>> print(expanded.shape, expanded) (1, 2, None) <tf.RaggedTensor [[[1, 2], [3]]]> >>> expanded = tf.expand_dims(rt, axis=1) >>> print(expanded.shape, expanded) (2, 1, None) <tf.RaggedTensor [[[1, 2]], [[3]]]> >>> expanded = tf.expand_dims(rt, axis=2) >>> print(expanded.shape, expanded) (2, None, 1) <tf.RaggedTensor [[[1], [2]], [[3]]]> """ with ops.name_scope(name, 'RaggedExpandDims', [input]): input = ragged_tensor.convert_to_tensor_or_ragged_tensor( input, name='input') if not ragged_tensor.is_ragged(input): return array_ops.expand_dims(input, axis) ndims = None if input.shape.ndims is None else input.shape.ndims + 1 axis = array_ops.get_positive_axis(axis, ndims, ndims_name='rank(input)') if axis == 0: return ragged_tensor.RaggedTensor.from_uniform_row_length( input, uniform_row_length=input.nrows(), nrows=1, validate=False) elif axis == 1: return ragged_tensor.RaggedTensor.from_uniform_row_length( input, uniform_row_length=1, nrows=input.nrows(), validate=False) else: return input.with_values(expand_dims(input.values, axis - 1)) #=============================================================================== # RaggedTensor Size #=============================================================================== def size(input, out_type=dtypes.int32, name=None): # pylint: disable=redefined-builtin """Returns the size of a potentially ragged tensor. The size of a ragged tensor is the size of its inner values. #### Example: >>> tf.size(tf.ragged.constant([[1, 2], [3]])).numpy() 3 Args: input: A potentially ragged `Tensor`. out_type: The numeric output type for the operation. name: A name for the operation (optional). Returns: A Tensor of type `out_type`. """ if ragged_tensor.is_ragged(input): return array_ops.size(input.flat_values, out_type=out_type, name=name) else: return array_ops.size(input, out_type=out_type, name=name) #=============================================================================== # ragged.rank #=============================================================================== def rank(input, name=None): # pylint: disable=redefined-builtin """Returns the rank of a RaggedTensor. Returns a 0-D `int32` `Tensor` representing the rank of `input`. #### Example: >>> # shape of tensor 't' is [2, None, None] >>> t = tf.ragged.constant([[[1], [2, 2]], [[3, 3, 3], [4, 4, 4, 4]]]) >>> tf.rank(t).numpy() 3 Args: input: A `RaggedTensor` name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ with ops.name_scope(name, 'RaggedRank', [input]) as name: if not ragged_tensor.is_ragged(input): return array_ops.rank(input, name) return input.ragged_rank + array_ops.rank(input.flat_values) #=============================================================================== # ragged.one_hot #=============================================================================== def ragged_one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None): """Applies tf.one_hot along the values of a RaggedTensor.""" # Get the adjusted axis value for the call to array_ops.one_hot. # Note: the only negative `axis` value supported by array_ops.one_hot is -1. if isinstance(axis, int) and axis >= 0: if axis <= indices.ragged_rank: raise ValueError('axis (%d) must be greater than indices.ragged_rank ' '(%d).' % (axis, indices.ragged_rank)) axis -= indices.ragged_rank with ops.name_scope(name, 'RaggedOneHot', [indices, depth, on_value, off_value, axis]): indices = ragged_tensor.convert_to_tensor_or_ragged_tensor( indices, name='indices') return indices.with_flat_values( array_ops.one_hot(indices.flat_values, depth, on_value, off_value, axis, dtype, name)) #=============================================================================== # ragged.stack_dynamic_partitions #=============================================================================== @tf_export('ragged.stack_dynamic_partitions') @dispatch.add_dispatch_support def stack_dynamic_partitions(data, partitions, num_partitions, name=None): """Stacks dynamic partitions of a Tensor or RaggedTensor. Returns a RaggedTensor `output` with `num_partitions` rows, where the row `output[i]` is formed by stacking all slices `data[j1...jN]` such that `partitions[j1...jN] = i`. Slices of `data` are stacked in row-major order. If `num_partitions` is an `int` (not a `Tensor`), then this is equivalent to `tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))`. #### Example: >>> data = ['a', 'b', 'c', 'd', 'e'] >>> partitions = [ 3, 0, 2, 2, 3] >>> num_partitions = 5 >>> tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions) <tf.RaggedTensor [[b'b'], [], [b'c', b'd'], [b'a', b'e'], []]> Args: data: A `Tensor` or `RaggedTensor` containing the values to stack. partitions: An `int32` or `int64` `Tensor` or `RaggedTensor` specifying the partition that each slice of `data` should be added to. `partitions.shape` must be a prefix of `data.shape`. Values must be greater than or equal to zero, and less than `num_partitions`. `partitions` is not required to be sorted. num_partitions: An `int32` or `int64` scalar specifying the number of partitions to output. This determines the number of rows in `output`. name: A name prefix for the returned tensor (optional). Returns: A `RaggedTensor` containing the stacked partitions. The returned tensor has the same dtype as `data`, and its shape is `[num_partitions, (D)] + data.shape[partitions.rank:]`, where `(D)` is a ragged dimension whose length is the number of data slices stacked for each `partition`. """ with ops.name_scope(name, 'SegmentStack', [data, partitions, num_partitions]): # Convert inputs to tensors. data = ragged_tensor.convert_to_tensor_or_ragged_tensor(data, name='data') row_splits_dtype = ( data.row_splits.dtype if isinstance(data, ragged_tensor.RaggedTensor) else None) partitions = ragged_tensor.convert_to_tensor_or_ragged_tensor( partitions, name='partitions', preferred_dtype=row_splits_dtype) num_partitions = ops.convert_to_tensor( num_partitions, name='num_partitions', preferred_dtype=partitions.dtype) if row_splits_dtype is not None: partitions = math_ops.cast(partitions, row_splits_dtype) num_partitions = math_ops.cast(num_partitions, partitions.dtype) # Sanity-checks for shapes. partitions_rank = partitions.shape.ndims if partitions_rank is None: raise ValueError('partitions must have known rank.') num_partitions.shape.assert_has_rank(0) partitions.shape.assert_is_compatible_with(data.shape[:partitions_rank]) if partitions_rank == 0: # If partitions is a scalar, then just create a RaggedTensor containing # that single the complete `data` value in the specified row. return ragged_tensor.RaggedTensor.from_value_rowids( values=array_ops.stack([data]), value_rowids=array_ops.stack([partitions]), nrows=num_partitions, validate=False) elif partitions_rank == 1: # If partitions is a vector (the typical case): we can just use data and # partitions as the `values` and `value_rowids` for `from_value_rowids`, # as long as we sort them first. permutation = sort_ops.argsort(partitions, stable=True) value_rowids = array_ops.gather(partitions, permutation) values = array_ops.gather(data, permutation) check = check_ops.assert_less( value_rowids[-1:], num_partitions, message='partitions must be less than num_partitions') with ops.control_dependencies([check]): return ragged_tensor.RaggedTensor.from_value_rowids( values, value_rowids, nrows=num_partitions, validate=False) else: # Handle higher-dimensional partitions via recursion. if not isinstance(data, ragged_tensor.RaggedTensor): data = ragged_tensor.RaggedTensor.from_tensor( data, row_splits_dtype=partitions.dtype, ragged_rank=1) if not isinstance(partitions, ragged_tensor.RaggedTensor): partitions = ragged_tensor.RaggedTensor.from_tensor( partitions, row_splits_dtype=partitions.dtype, ragged_rank=max(data.ragged_rank, partitions_rank - 1)) check = check_ops.assert_equal( data.row_splits, partitions.row_splits, message='data and partitions have incompatible ragged shapes') with ops.control_dependencies([check]): return stack_dynamic_partitions(data.values, partitions.values, num_partitions) #=============================================================================== # Reverse #=============================================================================== def reverse(tensor, axis, name=None): """Reverses a RaggedTensor along the specified axes. #### Example: >>> data = tf.ragged.constant([ ... [[1, 2], [3, 4]], [[5, 6]], [[7, 8], [9, 10], [11, 12]]]) >>> tf.reverse(data, axis=[0, 2]) <tf.RaggedTensor [[[8, 7], [10, 9], [12, 11]], [[6, 5]], [[2, 1], [4, 3]]]> Args: tensor: A 'RaggedTensor' to reverse. axis: A list or tuple of 'int' or a constant 1D 'tf.Tensor'. The indices of the axes to reverse. name: A name prefix for the returned tensor (optional). Returns: A 'RaggedTensor'. """ type_error_msg = ('`axis` must be a list of int or a constant tensor' 'when reversing axes in a ragged tensor') with ops.name_scope(name, 'Reverse', [tensor, axis]): if isinstance(axis, ops.Tensor): axis = tensor_util.constant_value(axis) if axis is None: raise TypeError(type_error_msg) elif not (isinstance(axis, (list, tuple)) and all(isinstance(dim, int) for dim in axis)): raise TypeError(type_error_msg) tensor = ragged_tensor.convert_to_tensor_or_ragged_tensor( tensor, name='tensor') # Allow usage of negative values to specify innermost axes. axis = [ array_ops.get_positive_axis(dim, tensor.shape.rank, 'axis[%d]' % i, 'rank(tensor)') for i, dim in enumerate(axis) ] # We only need to slice up to the max axis. If the axis list # is empty, it should be 0. slices = [slice(None)] * (max(axis) + 1 if axis else 0) for dim in axis: slices[dim] = slice(None, None, -1) return tensor[tuple(slices)] #=============================================================================== # Cross #=============================================================================== @tf_export('ragged.cross') @dispatch.add_dispatch_support def cross(inputs, name=None): """Generates feature cross from a list of tensors. The input tensors must have `rank=2`, and must all have the same number of rows. The result is a `RaggedTensor` with the same number of rows as the inputs, where `result[row]` contains a list of all combinations of values formed by taking a single value from each input's corresponding row (`inputs[i][row]`). Values are combined by joining their strings with '_X_'. E.g.: >>> tf.ragged.cross([tf.ragged.constant([['a'], ['b', 'c']]), ... tf.ragged.constant([['d'], ['e']]), ... tf.ragged.constant([['f'], ['g']])]) <tf.RaggedTensor [[b'a_X_d_X_f'], [b'b_X_e_X_g', b'c_X_e_X_g']]> Args: inputs: A list of `RaggedTensor` or `Tensor` or `SparseTensor`. name: Optional name for the op. Returns: A 2D `RaggedTensor` of type `string`. """ return _cross_internal(inputs=inputs, hashed_output=False, name=name) @tf_export('ragged.cross_hashed') @dispatch.add_dispatch_support def cross_hashed(inputs, num_buckets=0, hash_key=None, name=None): """Generates hashed feature cross from a list of tensors. The input tensors must have `rank=2`, and must all have the same number of rows. The result is a `RaggedTensor` with the same number of rows as the inputs, where `result[row]` contains a list of all combinations of values formed by taking a single value from each input's corresponding row (`inputs[i][row]`). Values are combined by hashing together their fingerprints. E.g.: >>> tf.ragged.cross_hashed([tf.ragged.constant([['a'], ['b', 'c']]), ... tf.ragged.constant([['d'], ['e']]), ... tf.ragged.constant([['f'], ['g']])], ... num_buckets=100) <tf.RaggedTensor [[78], [66, 74]]> Args: inputs: A list of `RaggedTensor` or `Tensor` or `SparseTensor`. num_buckets: A non-negative `int` that used to bucket the hashed values. If `num_buckets != 0`, then `output = hashed_value % num_buckets`. hash_key: Integer hash_key that will be used by the `FingerprintCat64` function. If not given, a default key is used. name: Optional name for the op. Returns: A 2D `RaggedTensor` of type `int64`. """ return _cross_internal( inputs=inputs, hashed_output=True, num_buckets=num_buckets, hash_key=hash_key, name=name) _DEFAULT_CROSS_HASH_KEY = 0xDECAFCAFFE def _cross_internal(inputs, hashed_output=False, num_buckets=0, hash_key=None, name=None): """Generates feature cross from a list of ragged and dense tensors.""" if not isinstance(inputs, (tuple, list)): raise TypeError('Inputs must be a list') if hash_key is None: hash_key = _DEFAULT_CROSS_HASH_KEY ragged_inputs = [] sparse_inputs = [] dense_inputs = [] input_order = [] with ops.name_scope(name, 'RaggedCross', inputs): for i, t in enumerate(inputs): if sparse_tensor.is_sparse(t): t = sparse_tensor.SparseTensor.from_value(t) else: t = ragged_tensor.convert_to_tensor_or_ragged_tensor(t) if t.dtype.is_integer: t = math_ops.cast(t, dtypes.int64) elif t.dtype != dtypes.string: raise ValueError('Unexpected dtype for inputs[%d]: %s' % (i, t.dtype)) if isinstance(t, ragged_tensor.RaggedTensor): if t.ragged_rank != 1: raise ValueError('tf.ragged.cross only supports inputs with rank=2') ragged_inputs.append(t) input_order.append('R') elif isinstance(t, sparse_tensor.SparseTensor): sparse_inputs.append(t) input_order.append('S') else: dense_inputs.append(t) input_order.append('D') out_values_type = dtypes.int64 if hashed_output else dtypes.string if ragged_inputs and all( t.row_splits.dtype == dtypes.int32 for t in ragged_inputs): out_row_splits_type = dtypes.int32 else: out_row_splits_type = dtypes.int64 # Convert hash_key from uint64 -> int64, since we need to pass it via # an int64 attr. if hash_key > 2**63: hash_key -= 2**64 values_out, splits_out = gen_ragged_array_ops.ragged_cross( ragged_values=[rt.values for rt in ragged_inputs], ragged_row_splits=[rt.row_splits for rt in ragged_inputs], sparse_indices=[st.indices for st in sparse_inputs], sparse_values=[st.values for st in sparse_inputs], sparse_shape=[st.dense_shape for st in sparse_inputs], dense_inputs=dense_inputs, input_order=''.join(input_order), hashed_output=hashed_output, num_buckets=num_buckets, hash_key=hash_key, out_values_type=out_values_type.as_datatype_enum, out_row_splits_type=out_row_splits_type.as_datatype_enum, name=name) return ragged_tensor.RaggedTensor.from_row_splits( values_out, splits_out, validate=False)