EVOLUTION-MANAGER
Edit File: linear_operator_lower_triangular.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """`LinearOperator` acting like a lower triangular matrix.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linalg_impl as linalg from tensorflow.python.ops.linalg import linear_operator from tensorflow.python.ops.linalg import linear_operator_util from tensorflow.python.util.tf_export import tf_export __all__ = [ "LinearOperatorLowerTriangular", ] @tf_export("linalg.LinearOperatorLowerTriangular") class LinearOperatorLowerTriangular(linear_operator.LinearOperator): """`LinearOperator` acting like a [batch] square lower triangular matrix. This operator acts like a [batch] lower triangular matrix `A` with shape `[B1,...,Bb, N, N]` for some `b >= 0`. The first `b` indices index a batch member. For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is an `N x N` matrix. `LinearOperatorLowerTriangular` is initialized with a `Tensor` having dimensions `[B1,...,Bb, N, N]`. The upper triangle of the last two dimensions is ignored. ```python # Create a 2 x 2 lower-triangular linear operator. tril = [[1., 2.], [3., 4.]] operator = LinearOperatorLowerTriangular(tril) # The upper triangle is ignored. operator.to_dense() ==> [[1., 0.] [3., 4.]] operator.shape ==> [2, 2] operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [2, 4] Tensor operator.matmul(x) ==> Shape [2, 4] Tensor # Create a [2, 3] batch of 4 x 4 linear operators. tril = tf.random.normal(shape=[2, 3, 4, 4]) operator = LinearOperatorLowerTriangular(tril) ``` #### Shape compatibility This operator acts on [batch] matrix with compatible shape. `x` is a batch matrix with compatible shape for `matmul` and `solve` if ``` operator.shape = [B1,...,Bb] + [N, N], with b >= 0 x.shape = [B1,...,Bb] + [N, R], with R >= 0. ``` #### Performance Suppose `operator` is a `LinearOperatorLowerTriangular` of shape `[N, N]`, and `x.shape = [N, R]`. Then * `operator.matmul(x)` involves `N^2 * R` multiplications. * `operator.solve(x)` involves `N * R` size `N` back-substitutions. * `operator.determinant()` involves a size `N` `reduce_prod`. If instead `operator` and `x` have shape `[B1,...,Bb, N, N]` and `[B1,...,Bb, N, R]`, every operation increases in complexity by `B1*...*Bb`. #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning: * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a runtime assert. For example, finite floating point precision may result in these promises being violated. * If `is_X == False`, callers should expect the operator to not have `X`. * If `is_X == None` (the default), callers should have no expectation either way. """ def __init__(self, tril, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=None, name="LinearOperatorLowerTriangular"): r"""Initialize a `LinearOperatorLowerTriangular`. Args: tril: Shape `[B1,...,Bb, N, N]` with `b >= 0`, `N >= 0`. The lower triangular part of `tril` defines this operator. The strictly upper triangle is ignored. is_non_singular: Expect that this operator is non-singular. This operator is non-singular if and only if its diagonal elements are all non-zero. is_self_adjoint: Expect that this operator is equal to its hermitian transpose. This operator is self-adjoint only if it is diagonal with real-valued diagonal entries. In this case it is advised to use `LinearOperatorDiag`. is_positive_definite: Expect that this operator is positive definite, meaning the quadratic form `x^H A x` has positive real part for all nonzero `x`. Note that we do not require the operator to be self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices is_square: Expect that this operator acts like square [batch] matrices. name: A name for this `LinearOperator`. Raises: ValueError: If `is_square` is `False`. """ parameters = dict( tril=tril, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, name=name ) if is_square is False: raise ValueError( "Only square lower triangular operators supported at this time.") is_square = True with ops.name_scope(name, values=[tril]): self._tril = linear_operator_util.convert_nonref_to_tensor(tril, name="tril") self._check_tril(self._tril) super(LinearOperatorLowerTriangular, self).__init__( dtype=self._tril.dtype, graph_parents=None, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, parameters=parameters, name=name) self._set_graph_parents([self._tril]) def _check_tril(self, tril): """Static check of the `tril` argument.""" if tril.shape.ndims is not None and tril.shape.ndims < 2: raise ValueError( "Argument tril must have at least 2 dimensions. Found: %s" % tril) def _get_tril(self): """Gets the `tril` kwarg, with upper part zero-d out.""" return array_ops.matrix_band_part(self._tril, -1, 0) def _get_diag(self): """Gets the diagonal part of `tril` kwarg.""" return array_ops.matrix_diag_part(self._tril) def _shape(self): return self._tril.shape def _shape_tensor(self): return array_ops.shape(self._tril) def _assert_non_singular(self): return linear_operator_util.assert_no_entries_with_modulus_zero( self._get_diag(), message="Singular operator: Diagonal contained zero values.") def _matmul(self, x, adjoint=False, adjoint_arg=False): return math_ops.matmul( self._get_tril(), x, adjoint_a=adjoint, adjoint_b=adjoint_arg) def _determinant(self): return math_ops.reduce_prod(self._get_diag(), axis=[-1]) def _log_abs_determinant(self): return math_ops.reduce_sum( math_ops.log(math_ops.abs(self._get_diag())), axis=[-1]) def _solve(self, rhs, adjoint=False, adjoint_arg=False): rhs = linalg.adjoint(rhs) if adjoint_arg else rhs return linalg.triangular_solve( self._get_tril(), rhs, lower=True, adjoint=adjoint) def _to_dense(self): return self._get_tril() def _eigvals(self): return self._get_diag()