EVOLUTION-MANAGER
Edit File: linear_operator_householder.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """`LinearOperator` acting like a Householder transformation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linalg_impl as linalg from tensorflow.python.ops.linalg import linear_operator from tensorflow.python.ops.linalg import linear_operator_util from tensorflow.python.util.tf_export import tf_export __all__ = ["LinearOperatorHouseholder",] @tf_export("linalg.LinearOperatorHouseholder") class LinearOperatorHouseholder(linear_operator.LinearOperator): """`LinearOperator` acting like a [batch] of Householder transformations. This operator acts like a [batch] of householder reflections with shape `[B1,...,Bb, N, N]` for some `b >= 0`. The first `b` indices index a batch member. For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is an `N x N` matrix. This matrix `A` is not materialized, but for purposes of broadcasting this shape will be relevant. `LinearOperatorHouseholder` is initialized with a (batch) vector. A Householder reflection, defined via a vector `v`, which reflects points in `R^n` about the hyperplane orthogonal to `v` and through the origin. ```python # Create a 2 x 2 householder transform. vec = [1 / np.sqrt(2), 1. / np.sqrt(2)] operator = LinearOperatorHouseholder(vec) operator.to_dense() ==> [[0., -1.] [-1., -0.]] operator.shape ==> [2, 2] operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [2, 4] Tensor operator.matmul(x) ==> Shape [2, 4] Tensor ``` #### Shape compatibility This operator acts on [batch] matrix with compatible shape. `x` is a batch matrix with compatible shape for `matmul` and `solve` if ``` operator.shape = [B1,...,Bb] + [N, N], with b >= 0 x.shape = [C1,...,Cc] + [N, R], and [C1,...,Cc] broadcasts with [B1,...,Bb] to [D1,...,Dd] ``` #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning: * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a runtime assert. For example, finite floating point precision may result in these promises being violated. * If `is_X == False`, callers should expect the operator to not have `X`. * If `is_X == None` (the default), callers should have no expectation either way. """ def __init__(self, reflection_axis, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=None, name="LinearOperatorHouseholder"): r"""Initialize a `LinearOperatorHouseholder`. Args: reflection_axis: Shape `[B1,...,Bb, N]` `Tensor` with `b >= 0` `N >= 0`. The vector defining the hyperplane to reflect about. Allowed dtypes: `float16`, `float32`, `float64`, `complex64`, `complex128`. is_non_singular: Expect that this operator is non-singular. is_self_adjoint: Expect that this operator is equal to its hermitian transpose. This is autoset to true is_positive_definite: Expect that this operator is positive definite, meaning the quadratic form `x^H A x` has positive real part for all nonzero `x`. Note that we do not require the operator to be self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices This is autoset to false. is_square: Expect that this operator acts like square [batch] matrices. This is autoset to true. name: A name for this `LinearOperator`. Raises: ValueError: `is_self_adjoint` is not `True`, `is_positive_definite` is not `False` or `is_square` is not `True`. """ parameters = dict( reflection_axis=reflection_axis, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, name=name ) with ops.name_scope(name, values=[reflection_axis]): self._reflection_axis = linear_operator_util.convert_nonref_to_tensor( reflection_axis, name="reflection_axis") self._check_reflection_axis(self._reflection_axis) # Check and auto-set hints. if is_self_adjoint is False: # pylint:disable=g-bool-id-comparison raise ValueError("A Householder operator is always self adjoint.") else: is_self_adjoint = True if is_positive_definite is True: # pylint:disable=g-bool-id-comparison raise ValueError( "A Householder operator is always non-positive definite.") else: is_positive_definite = False if is_square is False: # pylint:disable=g-bool-id-comparison raise ValueError("A Householder operator is always square.") is_square = True super(LinearOperatorHouseholder, self).__init__( dtype=self._reflection_axis.dtype, graph_parents=None, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, parameters=parameters, name=name) # TODO(b/143910018) Remove graph_parents in V3. self._set_graph_parents([self._reflection_axis]) def _check_reflection_axis(self, reflection_axis): """Static check of reflection_axis.""" if (reflection_axis.shape.ndims is not None and reflection_axis.shape.ndims < 1): raise ValueError( "Argument reflection_axis must have at least 1 dimension. " "Found: %s" % reflection_axis) def _shape(self): # If d_shape = [5, 3], we return [5, 3, 3]. d_shape = self._reflection_axis.shape return d_shape.concatenate(d_shape[-1:]) def _shape_tensor(self): d_shape = array_ops.shape(self._reflection_axis) k = d_shape[-1] return array_ops.concat((d_shape, [k]), 0) def _assert_non_singular(self): return control_flow_ops.no_op("assert_non_singular") def _assert_positive_definite(self): raise errors.InvalidArgumentError( node_def=None, op=None, message="Householder operators are always " "non-positive definite.") def _assert_self_adjoint(self): return control_flow_ops.no_op("assert_self_adjoint") def _matmul(self, x, adjoint=False, adjoint_arg=False): # Given a vector `v`, we would like to reflect `x` about the hyperplane # orthogonal to `v` going through the origin. We first project `x` to `v` # to get v * dot(v, x) / dot(v, v). After we project, we can reflect the # projection about the hyperplane by flipping sign to get # -v * dot(v, x) / dot(v, v). Finally, we can add back the component # that is orthogonal to v. This is invariant under reflection, since the # whole hyperplane is invariant. This component is equal to x - v * dot(v, # x) / dot(v, v), giving the formula x - 2 * v * dot(v, x) / dot(v, v) # for the reflection. # Note that because this is a reflection, it lies in O(n) (for real vector # spaces) or U(n) (for complex vector spaces), and thus is its own adjoint. reflection_axis = ops.convert_to_tensor_v2_with_dispatch( self.reflection_axis) x = linalg.adjoint(x) if adjoint_arg else x normalized_axis = reflection_axis / linalg.norm( reflection_axis, axis=-1, keepdims=True) mat = normalized_axis[..., array_ops.newaxis] x_dot_normalized_v = math_ops.matmul(mat, x, adjoint_a=True) return x - 2 * mat * x_dot_normalized_v def _trace(self): # We have (n - 1) +1 eigenvalues and a single -1 eigenvalue. shape = self.shape_tensor() return math_ops.cast( self._domain_dimension_tensor(shape=shape) - 2, self.dtype) * array_ops.ones( shape=self._batch_shape_tensor(shape=shape), dtype=self.dtype) def _determinant(self): # For householder transformations, the determinant is -1. return -array_ops.ones(shape=self.batch_shape_tensor(), dtype=self.dtype) def _log_abs_determinant(self): # Orthogonal matrix -> log|Q| = 0. return array_ops.zeros(shape=self.batch_shape_tensor(), dtype=self.dtype) def _solve(self, rhs, adjoint=False, adjoint_arg=False): # A householder reflection is a reflection, hence is idempotent. Thus we # can just apply a matmul. return self._matmul(rhs, adjoint, adjoint_arg) def _to_dense(self): reflection_axis = ops.convert_to_tensor_v2_with_dispatch( self.reflection_axis) normalized_axis = reflection_axis / linalg.norm( reflection_axis, axis=-1, keepdims=True) mat = normalized_axis[..., array_ops.newaxis] matrix = -2 * math_ops.matmul(mat, mat, adjoint_b=True) return array_ops.matrix_set_diag( matrix, 1. + array_ops.matrix_diag_part(matrix)) def _diag_part(self): reflection_axis = ops.convert_to_tensor_v2_with_dispatch( self.reflection_axis) normalized_axis = reflection_axis / linalg.norm( reflection_axis, axis=-1, keepdims=True) return 1. - 2 * normalized_axis * math_ops.conj(normalized_axis) def _eigvals(self): # We have (n - 1) +1 eigenvalues and a single -1 eigenvalue. result_shape = array_ops.shape(self.reflection_axis) n = result_shape[-1] ones_shape = array_ops.concat([result_shape[:-1], [n - 1]], axis=-1) neg_shape = array_ops.concat([result_shape[:-1], [1]], axis=-1) eigvals = array_ops.ones(shape=ones_shape, dtype=self.dtype) eigvals = array_ops.concat( [-array_ops.ones(shape=neg_shape, dtype=self.dtype), eigvals], axis=-1) return eigvals def _cond(self): # Householder matrices are rotations which have condition number 1. return array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype) @property def reflection_axis(self): return self._reflection_axis