EVOLUTION-MANAGER
Edit File: linear_operator_full_matrix.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """`LinearOperator` that wraps a [batch] matrix.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linear_operator from tensorflow.python.ops.linalg import linear_operator_util from tensorflow.python.util.tf_export import tf_export __all__ = ["LinearOperatorFullMatrix"] @tf_export("linalg.LinearOperatorFullMatrix") class LinearOperatorFullMatrix(linear_operator.LinearOperator): """`LinearOperator` that wraps a [batch] matrix. This operator wraps a [batch] matrix `A` (which is a `Tensor`) with shape `[B1,...,Bb, M, N]` for some `b >= 0`. The first `b` indices index a batch member. For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is an `M x N` matrix. ```python # Create a 2 x 2 linear operator. matrix = [[1., 2.], [3., 4.]] operator = LinearOperatorFullMatrix(matrix) operator.to_dense() ==> [[1., 2.] [3., 4.]] operator.shape ==> [2, 2] operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [2, 4] Tensor operator.matmul(x) ==> Shape [2, 4] Tensor # Create a [2, 3] batch of 4 x 4 linear operators. matrix = tf.random.normal(shape=[2, 3, 4, 4]) operator = LinearOperatorFullMatrix(matrix) ``` #### Shape compatibility This operator acts on [batch] matrix with compatible shape. `x` is a batch matrix with compatible shape for `matmul` and `solve` if ``` operator.shape = [B1,...,Bb] + [M, N], with b >= 0 x.shape = [B1,...,Bb] + [N, R], with R >= 0. ``` #### Performance `LinearOperatorFullMatrix` has exactly the same performance as would be achieved by using standard `TensorFlow` matrix ops. Intelligent choices are made based on the following initialization hints. * If `dtype` is real, and `is_self_adjoint` and `is_positive_definite`, a Cholesky factorization is used for the determinant and solve. In all cases, suppose `operator` is a `LinearOperatorFullMatrix` of shape `[M, N]`, and `x.shape = [N, R]`. Then * `operator.matmul(x)` is `O(M * N * R)`. * If `M=N`, `operator.solve(x)` is `O(N^3 * R)`. * If `M=N`, `operator.determinant()` is `O(N^3)`. If instead `operator` and `x` have shape `[B1,...,Bb, M, N]` and `[B1,...,Bb, N, R]`, every operation increases in complexity by `B1*...*Bb`. #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning: * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a runtime assert. For example, finite floating point precision may result in these promises being violated. * If `is_X == False`, callers should expect the operator to not have `X`. * If `is_X == None` (the default), callers should have no expectation either way. """ def __init__(self, matrix, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=None, name="LinearOperatorFullMatrix"): r"""Initialize a `LinearOperatorFullMatrix`. Args: matrix: Shape `[B1,...,Bb, M, N]` with `b >= 0`, `M, N >= 0`. Allowed dtypes: `float16`, `float32`, `float64`, `complex64`, `complex128`. is_non_singular: Expect that this operator is non-singular. is_self_adjoint: Expect that this operator is equal to its hermitian transpose. is_positive_definite: Expect that this operator is positive definite, meaning the quadratic form `x^H A x` has positive real part for all nonzero `x`. Note that we do not require the operator to be self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices is_square: Expect that this operator acts like square [batch] matrices. name: A name for this `LinearOperator`. Raises: TypeError: If `diag.dtype` is not an allowed type. """ parameters = dict( matrix=matrix, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, name=name ) with ops.name_scope(name, values=[matrix]): self._matrix = linear_operator_util.convert_nonref_to_tensor( matrix, name="matrix") self._check_matrix(self._matrix) super(LinearOperatorFullMatrix, self).__init__( dtype=self._matrix.dtype, graph_parents=None, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, parameters=parameters, name=name) # TODO(b/143910018) Remove graph_parents in V3. self._set_graph_parents([self._matrix]) def _check_matrix(self, matrix): """Static check of the `matrix` argument.""" allowed_dtypes = [ dtypes.float16, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128, ] matrix = ops.convert_to_tensor_v2_with_dispatch(matrix, name="matrix") dtype = matrix.dtype if dtype not in allowed_dtypes: raise TypeError( "Argument matrix must have dtype in %s. Found: %s" % (allowed_dtypes, dtype)) if matrix.shape.ndims is not None and matrix.shape.ndims < 2: raise ValueError( "Argument matrix must have at least 2 dimensions. Found: %s" % matrix) def _shape(self): return self._matrix.shape def _shape_tensor(self): return array_ops.shape(self._matrix) def _matmul(self, x, adjoint=False, adjoint_arg=False): return math_ops.matmul( self._matrix, x, adjoint_a=adjoint, adjoint_b=adjoint_arg) def _solve(self, rhs, adjoint=False, adjoint_arg=False): return self._dense_solve(rhs, adjoint=adjoint, adjoint_arg=adjoint_arg) def _to_dense(self): return self._matrix