EVOLUTION-MANAGER
Edit File: linear_operator_block_diag.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Create a Block Diagonal operator from one or more `LinearOperators`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import common_shapes from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops.linalg import linear_operator from tensorflow.python.ops.linalg import linear_operator_algebra from tensorflow.python.ops.linalg import linear_operator_util from tensorflow.python.util.tf_export import tf_export __all__ = ["LinearOperatorBlockDiag"] @tf_export("linalg.LinearOperatorBlockDiag") class LinearOperatorBlockDiag(linear_operator.LinearOperator): """Combines one or more `LinearOperators` in to a Block Diagonal matrix. This operator combines one or more linear operators `[op1,...,opJ]`, building a new `LinearOperator`, whose underlying matrix representation is square and has each operator `opi` on the main diagonal, and zero's elsewhere. #### Shape compatibility If `opj` acts like a [batch] square matrix `Aj`, then `op_combined` acts like the [batch] square matrix formed by having each matrix `Aj` on the main diagonal. Each `opj` is required to represent a square matrix, and hence will have shape `batch_shape_j + [M_j, M_j]`. If `opj` has shape `batch_shape_j + [M_j, M_j]`, then the combined operator has shape `broadcast_batch_shape + [sum M_j, sum M_j]`, where `broadcast_batch_shape` is the mutual broadcast of `batch_shape_j`, `j = 1,...,J`, assuming the intermediate batch shapes broadcast. Even if the combined shape is well defined, the combined operator's methods may fail due to lack of broadcasting ability in the defining operators' methods. Arguments to `matmul`, `matvec`, `solve`, and `solvevec` may either be single `Tensor`s or lists of `Tensor`s that are interpreted as blocks. The `j`th element of a blockwise list of `Tensor`s must have dimensions that match `opj` for the given method. If a list of blocks is input, then a list of blocks is returned as well. ```python # Create a 4 x 4 linear operator combined of two 2 x 2 operators. operator_1 = LinearOperatorFullMatrix([[1., 2.], [3., 4.]]) operator_2 = LinearOperatorFullMatrix([[1., 0.], [0., 1.]]) operator = LinearOperatorBlockDiag([operator_1, operator_2]) operator.to_dense() ==> [[1., 2., 0., 0.], [3., 4., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]] operator.shape ==> [4, 4] operator.log_abs_determinant() ==> scalar Tensor x1 = ... # Shape [2, 2] Tensor x2 = ... # Shape [2, 2] Tensor x = tf.concat([x1, x2], 0) # Shape [2, 4] Tensor operator.matmul(x) ==> tf.concat([operator_1.matmul(x1), operator_2.matmul(x2)]) # Create a [2, 3] batch of 4 x 4 linear operators. matrix_44 = tf.random.normal(shape=[2, 3, 4, 4]) operator_44 = LinearOperatorFullMatrix(matrix) # Create a [1, 3] batch of 5 x 5 linear operators. matrix_55 = tf.random.normal(shape=[1, 3, 5, 5]) operator_55 = LinearOperatorFullMatrix(matrix_55) # Combine to create a [2, 3] batch of 9 x 9 operators. operator_99 = LinearOperatorBlockDiag([operator_44, operator_55]) # Create a shape [2, 3, 9] vector. x = tf.random.normal(shape=[2, 3, 9]) operator_99.matmul(x) ==> Shape [2, 3, 9] Tensor # Create a blockwise list of vectors. x = [tf.random.normal(shape=[2, 3, 4]), tf.random.normal(shape=[2, 3, 5])] operator_99.matmul(x) ==> [Shape [2, 3, 4] Tensor, Shape [2, 3, 5] Tensor] ``` #### Performance The performance of `LinearOperatorBlockDiag` on any operation is equal to the sum of the individual operators' operations. #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning: * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a runtime assert. For example, finite floating point precision may result in these promises being violated. * If `is_X == False`, callers should expect the operator to not have `X`. * If `is_X == None` (the default), callers should have no expectation either way. """ def __init__(self, operators, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=True, name=None): r"""Initialize a `LinearOperatorBlockDiag`. `LinearOperatorBlockDiag` is initialized with a list of operators `[op_1,...,op_J]`. Args: operators: Iterable of `LinearOperator` objects, each with the same `dtype` and composable shape. is_non_singular: Expect that this operator is non-singular. is_self_adjoint: Expect that this operator is equal to its hermitian transpose. is_positive_definite: Expect that this operator is positive definite, meaning the quadratic form `x^H A x` has positive real part for all nonzero `x`. Note that we do not require the operator to be self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices is_square: Expect that this operator acts like square [batch] matrices. This is true by default, and will raise a `ValueError` otherwise. name: A name for this `LinearOperator`. Default is the individual operators names joined with `_o_`. Raises: TypeError: If all operators do not have the same `dtype`. ValueError: If `operators` is empty or are non-square. """ parameters = dict( operators=operators, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, name=name ) # Validate operators. check_ops.assert_proper_iterable(operators) operators = list(operators) if not operators: raise ValueError( "Expected a non-empty list of operators. Found: %s" % operators) self._operators = operators # Define diagonal operators, for functions that are shared across blockwise # `LinearOperator` types. self._diagonal_operators = operators # Validate dtype. dtype = operators[0].dtype for operator in operators: if operator.dtype != dtype: name_type = (str((o.name, o.dtype)) for o in operators) raise TypeError( "Expected all operators to have the same dtype. Found %s" % " ".join(name_type)) # Auto-set and check hints. if all(operator.is_non_singular for operator in operators): if is_non_singular is False: raise ValueError( "The direct sum of non-singular operators is always non-singular.") is_non_singular = True if all(operator.is_self_adjoint for operator in operators): if is_self_adjoint is False: raise ValueError( "The direct sum of self-adjoint operators is always self-adjoint.") is_self_adjoint = True if all(operator.is_positive_definite for operator in operators): if is_positive_definite is False: raise ValueError( "The direct sum of positive definite operators is always " "positive definite.") is_positive_definite = True if not (is_square and all(operator.is_square for operator in operators)): raise ValueError( "Can only represent a block diagonal of square matrices.") # Initialization. graph_parents = [] for operator in operators: graph_parents.extend(operator.graph_parents) if name is None: # Using ds to mean direct sum. name = "_ds_".join(operator.name for operator in operators) with ops.name_scope(name, values=graph_parents): super(LinearOperatorBlockDiag, self).__init__( dtype=dtype, graph_parents=None, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=True, parameters=parameters, name=name) # TODO(b/143910018) Remove graph_parents in V3. self._set_graph_parents(graph_parents) @property def operators(self): return self._operators def _block_range_dimensions(self): return [op.range_dimension for op in self._diagonal_operators] def _block_domain_dimensions(self): return [op.domain_dimension for op in self._diagonal_operators] def _block_range_dimension_tensors(self): return [op.range_dimension_tensor() for op in self._diagonal_operators] def _block_domain_dimension_tensors(self): return [op.domain_dimension_tensor() for op in self._diagonal_operators] def _shape(self): # Get final matrix shape. domain_dimension = sum(self._block_domain_dimensions()) range_dimension = sum(self._block_range_dimensions()) matrix_shape = tensor_shape.TensorShape([domain_dimension, range_dimension]) # Get broadcast batch shape. # broadcast_shape checks for compatibility. batch_shape = self.operators[0].batch_shape for operator in self.operators[1:]: batch_shape = common_shapes.broadcast_shape( batch_shape, operator.batch_shape) return batch_shape.concatenate(matrix_shape) def _shape_tensor(self): # Avoid messy broadcasting if possible. if self.shape.is_fully_defined(): return ops.convert_to_tensor_v2_with_dispatch( self.shape.as_list(), dtype=dtypes.int32, name="shape") domain_dimension = sum(self._block_domain_dimension_tensors()) range_dimension = sum(self._block_range_dimension_tensors()) matrix_shape = array_ops.stack([domain_dimension, range_dimension]) # Dummy Tensor of zeros. Will never be materialized. zeros = array_ops.zeros(shape=self.operators[0].batch_shape_tensor()) for operator in self.operators[1:]: zeros += array_ops.zeros(shape=operator.batch_shape_tensor()) batch_shape = array_ops.shape(zeros) return array_ops.concat((batch_shape, matrix_shape), 0) def matmul(self, x, adjoint=False, adjoint_arg=False, name="matmul"): """Transform [batch] matrix `x` with left multiplication: `x --> Ax`. ```python # Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] X = ... # shape [..., N, R], batch matrix, R > 0. Y = operator.matmul(X) Y.shape ==> [..., M, R] Y[..., :, r] = sum_j A[..., :, j] X[j, r] ``` Args: x: `LinearOperator`, `Tensor` with compatible shape and same `dtype` as `self`, or a blockwise iterable of `LinearOperator`s or `Tensor`s. See class docstring for definition of shape compatibility. adjoint: Python `bool`. If `True`, left multiply by the adjoint: `A^H x`. adjoint_arg: Python `bool`. If `True`, compute `A x^H` where `x^H` is the hermitian transpose (transposition and complex conjugation). name: A name for this `Op`. Returns: A `LinearOperator` or `Tensor` with shape `[..., M, R]` and same `dtype` as `self`, or if `x` is blockwise, a list of `Tensor`s with shapes that concatenate to `[..., M, R]`. """ if isinstance(x, linear_operator.LinearOperator): left_operator = self.adjoint() if adjoint else self right_operator = x.adjoint() if adjoint_arg else x if (right_operator.range_dimension is not None and left_operator.domain_dimension is not None and right_operator.range_dimension != left_operator.domain_dimension): raise ValueError( "Operators are incompatible. Expected `x` to have dimension" " {} but got {}.".format( left_operator.domain_dimension, right_operator.range_dimension)) with self._name_scope(name): return linear_operator_algebra.matmul(left_operator, right_operator) with self._name_scope(name): arg_dim = -1 if adjoint_arg else -2 block_dimensions = (self._block_range_dimensions() if adjoint else self._block_domain_dimensions()) if linear_operator_util.arg_is_blockwise(block_dimensions, x, arg_dim): for i, block in enumerate(x): if not isinstance(block, linear_operator.LinearOperator): block = ops.convert_to_tensor_v2_with_dispatch(block) self._check_input_dtype(block) block_dimensions[i].assert_is_compatible_with(block.shape[arg_dim]) x[i] = block else: x = ops.convert_to_tensor_v2_with_dispatch(x, name="x") self._check_input_dtype(x) op_dimension = (self.range_dimension if adjoint else self.domain_dimension) op_dimension.assert_is_compatible_with(x.shape[arg_dim]) return self._matmul(x, adjoint=adjoint, adjoint_arg=adjoint_arg) def _matmul(self, x, adjoint=False, adjoint_arg=False): arg_dim = -1 if adjoint_arg else -2 block_dimensions = (self._block_range_dimensions() if adjoint else self._block_domain_dimensions()) blockwise_arg = linear_operator_util.arg_is_blockwise( block_dimensions, x, arg_dim) if blockwise_arg: split_x = x else: split_dim = -1 if adjoint_arg else -2 # Split input by rows normally, and otherwise columns. split_x = linear_operator_util.split_arg_into_blocks( self._block_domain_dimensions(), self._block_domain_dimension_tensors, x, axis=split_dim) result_list = [] for index, operator in enumerate(self.operators): result_list += [operator.matmul( split_x[index], adjoint=adjoint, adjoint_arg=adjoint_arg)] if blockwise_arg: return result_list result_list = linear_operator_util.broadcast_matrix_batch_dims( result_list) return array_ops.concat(result_list, axis=-2) def matvec(self, x, adjoint=False, name="matvec"): """Transform [batch] vector `x` with left multiplication: `x --> Ax`. ```python # Make an operator acting like batch matric A. Assume A.shape = [..., M, N] operator = LinearOperator(...) X = ... # shape [..., N], batch vector Y = operator.matvec(X) Y.shape ==> [..., M] Y[..., :] = sum_j A[..., :, j] X[..., j] ``` Args: x: `Tensor` with compatible shape and same `dtype` as `self`, or an iterable of `Tensor`s (for blockwise operators). `Tensor`s are treated a [batch] vectors, meaning for every set of leading dimensions, the last dimension defines a vector. See class docstring for definition of compatibility. adjoint: Python `bool`. If `True`, left multiply by the adjoint: `A^H x`. name: A name for this `Op`. Returns: A `Tensor` with shape `[..., M]` and same `dtype` as `self`. """ with self._name_scope(name): block_dimensions = (self._block_range_dimensions() if adjoint else self._block_domain_dimensions()) if linear_operator_util.arg_is_blockwise(block_dimensions, x, -1): for i, block in enumerate(x): if not isinstance(block, linear_operator.LinearOperator): block = ops.convert_to_tensor_v2_with_dispatch(block) self._check_input_dtype(block) block_dimensions[i].assert_is_compatible_with(block.shape[-1]) x[i] = block x_mat = [block[..., array_ops.newaxis] for block in x] y_mat = self.matmul(x_mat, adjoint=adjoint) return [array_ops.squeeze(y, axis=-1) for y in y_mat] x = ops.convert_to_tensor_v2_with_dispatch(x, name="x") self._check_input_dtype(x) op_dimension = (self.range_dimension if adjoint else self.domain_dimension) op_dimension.assert_is_compatible_with(x.shape[-1]) x_mat = x[..., array_ops.newaxis] y_mat = self.matmul(x_mat, adjoint=adjoint) return array_ops.squeeze(y_mat, axis=-1) def _determinant(self): result = self.operators[0].determinant() for operator in self.operators[1:]: result *= operator.determinant() return result def _log_abs_determinant(self): result = self.operators[0].log_abs_determinant() for operator in self.operators[1:]: result += operator.log_abs_determinant() return result def solve(self, rhs, adjoint=False, adjoint_arg=False, name="solve"): """Solve (exact or approx) `R` (batch) systems of equations: `A X = rhs`. The returned `Tensor` will be close to an exact solution if `A` is well conditioned. Otherwise closeness will vary. See class docstring for details. Examples: ```python # Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] # Solve R > 0 linear systems for every member of the batch. RHS = ... # shape [..., M, R] X = operator.solve(RHS) # X[..., :, r] is the solution to the r'th linear system # sum_j A[..., :, j] X[..., j, r] = RHS[..., :, r] operator.matmul(X) ==> RHS ``` Args: rhs: `Tensor` with same `dtype` as this operator and compatible shape, or a list of `Tensor`s (for blockwise operators). `Tensor`s are treated like a [batch] matrices meaning for every set of leading dimensions, the last two dimensions defines a matrix. See class docstring for definition of compatibility. adjoint: Python `bool`. If `True`, solve the system involving the adjoint of this `LinearOperator`: `A^H X = rhs`. adjoint_arg: Python `bool`. If `True`, solve `A X = rhs^H` where `rhs^H` is the hermitian transpose (transposition and complex conjugation). name: A name scope to use for ops added by this method. Returns: `Tensor` with shape `[...,N, R]` and same `dtype` as `rhs`. Raises: NotImplementedError: If `self.is_non_singular` or `is_square` is False. """ if self.is_non_singular is False: raise NotImplementedError( "Exact solve not implemented for an operator that is expected to " "be singular.") if self.is_square is False: raise NotImplementedError( "Exact solve not implemented for an operator that is expected to " "not be square.") if isinstance(rhs, linear_operator.LinearOperator): left_operator = self.adjoint() if adjoint else self right_operator = rhs.adjoint() if adjoint_arg else rhs if (right_operator.range_dimension is not None and left_operator.domain_dimension is not None and right_operator.range_dimension != left_operator.domain_dimension): raise ValueError( "Operators are incompatible. Expected `rhs` to have dimension" " {} but got {}.".format( left_operator.domain_dimension, right_operator.range_dimension)) with self._name_scope(name): return linear_operator_algebra.solve(left_operator, right_operator) with self._name_scope(name): block_dimensions = (self._block_domain_dimensions() if adjoint else self._block_range_dimensions()) arg_dim = -1 if adjoint_arg else -2 blockwise_arg = linear_operator_util.arg_is_blockwise( block_dimensions, rhs, arg_dim) if blockwise_arg: split_rhs = rhs for i, block in enumerate(split_rhs): if not isinstance(block, linear_operator.LinearOperator): block = ops.convert_to_tensor_v2_with_dispatch(block) self._check_input_dtype(block) block_dimensions[i].assert_is_compatible_with(block.shape[arg_dim]) split_rhs[i] = block else: rhs = ops.convert_to_tensor_v2_with_dispatch(rhs, name="rhs") self._check_input_dtype(rhs) op_dimension = (self.domain_dimension if adjoint else self.range_dimension) op_dimension.assert_is_compatible_with(rhs.shape[arg_dim]) split_dim = -1 if adjoint_arg else -2 # Split input by rows normally, and otherwise columns. split_rhs = linear_operator_util.split_arg_into_blocks( self._block_domain_dimensions(), self._block_domain_dimension_tensors, rhs, axis=split_dim) solution_list = [] for index, operator in enumerate(self.operators): solution_list += [operator.solve( split_rhs[index], adjoint=adjoint, adjoint_arg=adjoint_arg)] if blockwise_arg: return solution_list solution_list = linear_operator_util.broadcast_matrix_batch_dims( solution_list) return array_ops.concat(solution_list, axis=-2) def solvevec(self, rhs, adjoint=False, name="solve"): """Solve single equation with best effort: `A X = rhs`. The returned `Tensor` will be close to an exact solution if `A` is well conditioned. Otherwise closeness will vary. See class docstring for details. Examples: ```python # Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] # Solve one linear system for every member of the batch. RHS = ... # shape [..., M] X = operator.solvevec(RHS) # X is the solution to the linear system # sum_j A[..., :, j] X[..., j] = RHS[..., :] operator.matvec(X) ==> RHS ``` Args: rhs: `Tensor` with same `dtype` as this operator, or list of `Tensor`s (for blockwise operators). `Tensor`s are treated as [batch] vectors, meaning for every set of leading dimensions, the last dimension defines a vector. See class docstring for definition of compatibility regarding batch dimensions. adjoint: Python `bool`. If `True`, solve the system involving the adjoint of this `LinearOperator`: `A^H X = rhs`. name: A name scope to use for ops added by this method. Returns: `Tensor` with shape `[...,N]` and same `dtype` as `rhs`. Raises: NotImplementedError: If `self.is_non_singular` or `is_square` is False. """ with self._name_scope(name): block_dimensions = (self._block_domain_dimensions() if adjoint else self._block_range_dimensions()) if linear_operator_util.arg_is_blockwise(block_dimensions, rhs, -1): for i, block in enumerate(rhs): if not isinstance(block, linear_operator.LinearOperator): block = ops.convert_to_tensor_v2_with_dispatch(block) self._check_input_dtype(block) block_dimensions[i].assert_is_compatible_with(block.shape[-1]) rhs[i] = block rhs_mat = [array_ops.expand_dims(block, axis=-1) for block in rhs] solution_mat = self.solve(rhs_mat, adjoint=adjoint) return [array_ops.squeeze(x, axis=-1) for x in solution_mat] rhs = ops.convert_to_tensor_v2_with_dispatch(rhs, name="rhs") self._check_input_dtype(rhs) op_dimension = (self.domain_dimension if adjoint else self.range_dimension) op_dimension.assert_is_compatible_with(rhs.shape[-1]) rhs_mat = array_ops.expand_dims(rhs, axis=-1) solution_mat = self.solve(rhs_mat, adjoint=adjoint) return array_ops.squeeze(solution_mat, axis=-1) def _diag_part(self): diag_list = [] for operator in self.operators: # Extend the axis for broadcasting. diag_list += [operator.diag_part()[..., array_ops.newaxis]] diag_list = linear_operator_util.broadcast_matrix_batch_dims(diag_list) diagonal = array_ops.concat(diag_list, axis=-2) return array_ops.squeeze(diagonal, axis=-1) def _trace(self): result = self.operators[0].trace() for operator in self.operators[1:]: result += operator.trace() return result def _to_dense(self): num_cols = 0 rows = [] broadcasted_blocks = [operator.to_dense() for operator in self.operators] broadcasted_blocks = linear_operator_util.broadcast_matrix_batch_dims( broadcasted_blocks) for block in broadcasted_blocks: batch_row_shape = array_ops.shape(block)[:-1] zeros_to_pad_before_shape = array_ops.concat( [batch_row_shape, [num_cols]], axis=-1) zeros_to_pad_before = array_ops.zeros( shape=zeros_to_pad_before_shape, dtype=block.dtype) num_cols += array_ops.shape(block)[-1] zeros_to_pad_after_shape = array_ops.concat( [batch_row_shape, [self.domain_dimension_tensor() - num_cols]], axis=-1) zeros_to_pad_after = array_ops.zeros( shape=zeros_to_pad_after_shape, dtype=block.dtype) rows.append(array_ops.concat( [zeros_to_pad_before, block, zeros_to_pad_after], axis=-1)) mat = array_ops.concat(rows, axis=-2) mat.set_shape(self.shape) return mat def _assert_non_singular(self): return control_flow_ops.group([ operator.assert_non_singular() for operator in self.operators]) def _assert_self_adjoint(self): return control_flow_ops.group([ operator.assert_self_adjoint() for operator in self.operators]) def _assert_positive_definite(self): return control_flow_ops.group([ operator.assert_positive_definite() for operator in self.operators]) def _eigvals(self): eig_list = [] for operator in self.operators: # Extend the axis for broadcasting. eig_list += [operator.eigvals()[..., array_ops.newaxis]] eig_list = linear_operator_util.broadcast_matrix_batch_dims(eig_list) eigs = array_ops.concat(eig_list, axis=-2) return array_ops.squeeze(eigs, axis=-1)