EVOLUTION-MANAGER
Edit File: normal.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Normal (Gaussian) distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import kullback_leibler from tensorflow.python.ops.distributions import special_math from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export __all__ = [ "Normal", "NormalWithSoftplusScale", ] @tf_export(v1=["distributions.Normal"]) class Normal(distribution.Distribution): """The Normal distribution with location `loc` and `scale` parameters. #### Mathematical details The probability density function (pdf) is, ```none pdf(x; mu, sigma) = exp(-0.5 (x - mu)**2 / sigma**2) / Z Z = (2 pi sigma**2)**0.5 ``` where `loc = mu` is the mean, `scale = sigma` is the std. deviation, and, `Z` is the normalization constant. The Normal distribution is a member of the [location-scale family]( https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ Normal(loc=0, scale=1) Y = loc + scale * X ``` #### Examples Examples of initialization of one or a batch of distributions. ```python import tensorflow_probability as tfp tfd = tfp.distributions # Define a single scalar Normal distribution. dist = tfd.Normal(loc=0., scale=3.) # Evaluate the cdf at 1, returning a scalar. dist.cdf(1.) # Define a batch of two scalar valued Normals. # The first has mean 1 and standard deviation 11, the second 2 and 22. dist = tfd.Normal(loc=[1, 2.], scale=[11, 22.]) # Evaluate the pdf of the first distribution on 0, and the second on 1.5, # returning a length two tensor. dist.prob([0, 1.5]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) ``` Arguments are broadcast when possible. ```python # Define a batch of two scalar valued Normals. # Both have mean 1, but different standard deviations. dist = tfd.Normal(loc=1., scale=[11, 22.]) # Evaluate the pdf of both distributions on the same point, 3.0, # returning a length 2 tensor. dist.prob(3.0) ``` """ @deprecation.deprecated( "2019-01-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.distributions`.", warn_once=True) def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="Normal"): """Construct Normal distributions with mean and stddev `loc` and `scale`. The parameters `loc` and `scale` must be shaped in a way that supports broadcasting (e.g. `loc + scale` is a valid operation). Args: loc: Floating point tensor; the means of the distribution(s). scale: Floating point tensor; the stddevs of the distribution(s). Must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if `loc` and `scale` have different `dtype`. """ parameters = dict(locals()) with ops.name_scope(name, values=[loc, scale]) as name: with ops.control_dependencies([check_ops.assert_positive(scale)] if validate_args else []): self._loc = array_ops.identity(loc, name="loc") self._scale = array_ops.identity(scale, name="scale") check_ops.assert_same_float_dtype([self._loc, self._scale]) super(Normal, self).__init__( dtype=self._scale.dtype, reparameterization_type=distribution.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc, self._scale], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("loc", "scale"), ([ops.convert_to_tensor( sample_shape, dtype=dtypes.int32)] * 2))) @property def loc(self): """Distribution parameter for the mean.""" return self._loc @property def scale(self): """Distribution parameter for standard deviation.""" return self._scale def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.loc), array_ops.shape(self.scale)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.loc.get_shape(), self.scale.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): shape = array_ops.concat([[n], self.batch_shape_tensor()], 0) sampled = random_ops.random_normal( shape=shape, mean=0., stddev=1., dtype=self.loc.dtype, seed=seed) return sampled * self.scale + self.loc def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() def _log_cdf(self, x): return special_math.log_ndtr(self._z(x)) def _cdf(self, x): return special_math.ndtr(self._z(x)) def _log_survival_function(self, x): return special_math.log_ndtr(-self._z(x)) def _survival_function(self, x): return special_math.ndtr(-self._z(x)) def _log_unnormalized_prob(self, x): return -0.5 * math_ops.square(self._z(x)) def _log_normalization(self): return 0.5 * math.log(2. * math.pi) + math_ops.log(self.scale) def _entropy(self): # Use broadcasting rules to calculate the full broadcast scale. scale = self.scale * array_ops.ones_like(self.loc) return 0.5 * math.log(2. * math.pi * math.e) + math_ops.log(scale) def _mean(self): return self.loc * array_ops.ones_like(self.scale) def _quantile(self, p): return self._inv_z(special_math.ndtri(p)) def _stddev(self): return self.scale * array_ops.ones_like(self.loc) def _mode(self): return self._mean() def _z(self, x): """Standardize input `x` to a unit normal.""" with ops.name_scope("standardize", values=[x]): return (x - self.loc) / self.scale def _inv_z(self, z): """Reconstruct input `x` from a its normalized version.""" with ops.name_scope("reconstruct", values=[z]): return z * self.scale + self.loc class NormalWithSoftplusScale(Normal): """Normal with softplus applied to `scale`.""" @deprecation.deprecated( "2019-01-01", "Use `tfd.Normal(loc, tf.nn.softplus(scale)) " "instead.", warn_once=True) def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="NormalWithSoftplusScale"): parameters = dict(locals()) with ops.name_scope(name, values=[scale]) as name: super(NormalWithSoftplusScale, self).__init__( loc=loc, scale=nn.softplus(scale, name="softplus_scale"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters @kullback_leibler.RegisterKL(Normal, Normal) def _kl_normal_normal(n_a, n_b, name=None): """Calculate the batched KL divergence KL(n_a || n_b) with n_a and n_b Normal. Args: n_a: instance of a Normal distribution object. n_b: instance of a Normal distribution object. name: (optional) Name to use for created operations. default is "kl_normal_normal". Returns: Batchwise KL(n_a || n_b) """ with ops.name_scope(name, "kl_normal_normal", [n_a.loc, n_b.loc]): one = constant_op.constant(1, dtype=n_a.dtype) two = constant_op.constant(2, dtype=n_a.dtype) half = constant_op.constant(0.5, dtype=n_a.dtype) s_a_squared = math_ops.square(n_a.scale) s_b_squared = math_ops.square(n_b.scale) ratio = s_a_squared / s_b_squared return (math_ops.squared_difference(n_a.loc, n_b.loc) / (two * s_b_squared) + half * (ratio - one - math_ops.log(ratio)))