EVOLUTION-MANAGER
Edit File: np_utils.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Numpy-related utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.util.tf_export import keras_export @keras_export('keras.utils.to_categorical') def to_categorical(y, num_classes=None, dtype='float32'): """Converts a class vector (integers) to binary class matrix. E.g. for use with categorical_crossentropy. Arguments: y: class vector to be converted into a matrix (integers from 0 to num_classes). num_classes: total number of classes. If `None`, this would be inferred as the (largest number in `y`) + 1. dtype: The data type expected by the input. Default: `'float32'`. Returns: A binary matrix representation of the input. The classes axis is placed last. Example: >>> a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4) >>> a = tf.constant(a, shape=[4, 4]) >>> print(a) tf.Tensor( [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]], shape=(4, 4), dtype=float32) >>> b = tf.constant([.9, .04, .03, .03, ... .3, .45, .15, .13, ... .04, .01, .94, .05, ... .12, .21, .5, .17], ... shape=[4, 4]) >>> loss = tf.keras.backend.categorical_crossentropy(a, b) >>> print(np.around(loss, 5)) [0.10536 0.82807 0.1011 1.77196] >>> loss = tf.keras.backend.categorical_crossentropy(a, a) >>> print(np.around(loss, 5)) [0. 0. 0. 0.] Raises: Value Error: If input contains string value """ y = np.array(y, dtype='int') input_shape = y.shape if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: input_shape = tuple(input_shape[:-1]) y = y.ravel() if not num_classes: num_classes = np.max(y) + 1 n = y.shape[0] categorical = np.zeros((n, num_classes), dtype=dtype) categorical[np.arange(n), y] = 1 output_shape = input_shape + (num_classes,) categorical = np.reshape(categorical, output_shape) return categorical @keras_export('keras.utils.normalize') def normalize(x, axis=-1, order=2): """Normalizes a Numpy array. Arguments: x: Numpy array to normalize. axis: axis along which to normalize. order: Normalization order (e.g. `order=2` for L2 norm). Returns: A normalized copy of the array. """ l2 = np.atleast_1d(np.linalg.norm(x, order, axis)) l2[l2 == 0] = 1 return x / np.expand_dims(l2, axis)