EVOLUTION-MANAGER
Edit File: model_subclassing_test_util.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras models for use in Model subclassing tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python import keras from tensorflow.python.keras import testing_utils # pylint: disable=missing-docstring,not-callable class SimpleConvTestModel(keras.Model): def __init__(self, num_classes=10): super(SimpleConvTestModel, self).__init__(name='test_model') self.num_classes = num_classes self.conv1 = keras.layers.Conv2D(32, (3, 3), activation='relu') self.flatten = keras.layers.Flatten() self.dense1 = keras.layers.Dense(num_classes, activation='softmax') def call(self, x): x = self.conv1(x) x = self.flatten(x) return self.dense1(x) def get_multi_io_subclass_model(use_bn=False, use_dp=False, num_classes=(2, 3)): """Creates MultiIOModel for the tests of subclass model.""" shared_layer = keras.layers.Dense(32, activation='relu') branch_a = [shared_layer] if use_dp: branch_a.append(keras.layers.Dropout(0.5)) branch_a.append(keras.layers.Dense(num_classes[0], activation='softmax')) branch_b = [shared_layer] if use_bn: branch_b.append(keras.layers.BatchNormalization()) branch_b.append(keras.layers.Dense(num_classes[1], activation='softmax')) model = ( testing_utils._MultiIOSubclassModel( # pylint: disable=protected-access branch_a, branch_b, name='test_model')) return model class NestedTestModel1(keras.Model): """A model subclass nested inside a model subclass. """ def __init__(self, num_classes=2): super(NestedTestModel1, self).__init__(name='nested_model_1') self.num_classes = num_classes self.dense1 = keras.layers.Dense(32, activation='relu') self.dense2 = keras.layers.Dense(num_classes, activation='relu') self.bn = keras.layers.BatchNormalization() self.test_net = testing_utils.SmallSubclassMLP( num_hidden=32, num_classes=4, use_bn=True, use_dp=True) def call(self, inputs): x = self.dense1(inputs) x = self.bn(x) x = self.test_net(x) return self.dense2(x) class NestedTestModel2(keras.Model): """A model subclass with a functional-API graph network inside. """ def __init__(self, num_classes=2): super(NestedTestModel2, self).__init__(name='nested_model_2') self.num_classes = num_classes self.dense1 = keras.layers.Dense(32, activation='relu') self.dense2 = keras.layers.Dense(num_classes, activation='relu') self.bn = self.bn = keras.layers.BatchNormalization() self.test_net = self.get_functional_graph_model(32, 4) @staticmethod def get_functional_graph_model(input_dim, num_classes): # A simple functional-API model (a.k.a. graph network) inputs = keras.Input(shape=(input_dim,)) x = keras.layers.Dense(32, activation='relu')(inputs) x = keras.layers.BatchNormalization()(x) outputs = keras.layers.Dense(num_classes)(x) return keras.Model(inputs, outputs) def call(self, inputs): x = self.dense1(inputs) x = self.bn(x) x = self.test_net(x) return self.dense2(x) def get_nested_model_3(input_dim, num_classes): # A functional-API model with a subclassed model inside. # NOTE: this requires the inner subclass to implement `compute_output_shape`. inputs = keras.Input(shape=(input_dim,)) x = keras.layers.Dense(32, activation='relu')(inputs) x = keras.layers.BatchNormalization()(x) class Inner(keras.Model): def __init__(self): super(Inner, self).__init__() self.dense1 = keras.layers.Dense(32, activation='relu') self.dense2 = keras.layers.Dense(5, activation='relu') self.bn = keras.layers.BatchNormalization() def call(self, inputs): x = self.dense1(inputs) x = self.dense2(x) return self.bn(x) test_model = Inner() x = test_model(x) outputs = keras.layers.Dense(num_classes)(x) return keras.Model(inputs, outputs, name='nested_model_3') class CustomCallModel(keras.Model): def __init__(self): super(CustomCallModel, self).__init__() self.dense1 = keras.layers.Dense(1, activation='relu') self.dense2 = keras.layers.Dense(1, activation='softmax') def call(self, first, second, fiddle_with_output='no', training=True): combined = self.dense1(first) + self.dense2(second) if fiddle_with_output == 'yes': return 10. * combined else: return combined class TrainingNoDefaultModel(keras.Model): def __init__(self): super(TrainingNoDefaultModel, self).__init__() self.dense1 = keras.layers.Dense(1) def call(self, x, training): return self.dense1(x) class TrainingMaskingModel(keras.Model): def __init__(self): super(TrainingMaskingModel, self).__init__() self.dense1 = keras.layers.Dense(1) def call(self, x, training=False, mask=None): return self.dense1(x)