EVOLUTION-MANAGER
Edit File: model_config.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Functions that save the model's config into different formats. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import json from tensorflow.python.util.tf_export import keras_export # pylint: disable=g-import-not-at-top try: import yaml except ImportError: yaml = None # pylint: enable=g-import-not-at-top @keras_export('keras.models.model_from_config') def model_from_config(config, custom_objects=None): """Instantiates a Keras model from its config. Usage: ``` # for a Functional API model tf.keras.Model().from_config(model.get_config()) # for a Sequential model tf.keras.Sequential().from_config(model.get_config()) ``` Arguments: config: Configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). Raises: TypeError: if `config` is not a dictionary. """ if isinstance(config, list): raise TypeError('`model_from_config` expects a dictionary, not a list. ' 'Maybe you meant to use ' '`Sequential.from_config(config)`?') from tensorflow.python.keras.layers import deserialize # pylint: disable=g-import-not-at-top return deserialize(config, custom_objects=custom_objects) @keras_export('keras.models.model_from_yaml') def model_from_yaml(yaml_string, custom_objects=None): """Parses a yaml model configuration file and returns a model instance. Usage: >>> model = tf.keras.Sequential([ ... tf.keras.layers.Dense(5, input_shape=(3,)), ... tf.keras.layers.Softmax()]) >>> try: ... import yaml ... config = model.to_yaml() ... loaded_model = tf.keras.models.model_from_yaml(config) ... except ImportError: ... pass Arguments: yaml_string: YAML string or open file encoding a model configuration. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). Raises: ImportError: if yaml module is not found. """ if yaml is None: raise ImportError('Requires yaml module installed (`pip install pyyaml`).') # The method unsafe_load only exists in PyYAML 5.x+, so which branch of the # try block is covered by tests depends on the installed version of PyYAML. try: # PyYAML 5.x+ config = yaml.unsafe_load(yaml_string) except AttributeError: config = yaml.load(yaml_string) from tensorflow.python.keras.layers import deserialize # pylint: disable=g-import-not-at-top return deserialize(config, custom_objects=custom_objects) @keras_export('keras.models.model_from_json') def model_from_json(json_string, custom_objects=None): """Parses a JSON model configuration string and returns a model instance. Usage: >>> model = tf.keras.Sequential([ ... tf.keras.layers.Dense(5, input_shape=(3,)), ... tf.keras.layers.Softmax()]) >>> config = model.to_json() >>> loaded_model = tf.keras.models.model_from_json(config) Arguments: json_string: JSON string encoding a model configuration. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). """ config = json.loads(json_string) from tensorflow.python.keras.layers import deserialize # pylint: disable=g-import-not-at-top return deserialize(config, custom_objects=custom_objects)