EVOLUTION-MANAGER
Edit File: autocast_variable.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains AutoCastVariable, a variable which automatically casts itself.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from tensorflow.python.distribute import ps_values as ps_distribute_values from tensorflow.python.distribute import values as distribute_values from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.types import core # _autocast_dtype.dtype is the dtype AutoCastVariables should be cast to, or # None if AutoCastVariables should not be cast. _autocast_dtype = threading.local() class AutoCastVariable(variables.Variable, core.Tensor): """Variable that will cast itself to a different dtype in applicable contexts. This class wraps a floating-point `tf.Variable`. It emulates the variable interface and delegates to the wrapped variable, but it additionally will cast the wrapped variable under an `enable_auto_cast_variables(dtype)` context manager. For example: >>> v = tf.Variable(1.0, dtype=tf.float32) >>> v = AutoCastVariable(v) >>> tf.identity(v).dtype tf.float32 >>> with enable_auto_cast_variables(tf.float16): ... tf.identity(v).dtype tf.float16 The purpose of this class is to allow Keras layers to create variables in float32, and automatically cast them to float16 or bfloat16 when the layer is called. """ def __init__(self, variable, op=None): """Creates an AutoCastVariable instance. Args: variable: A floating-point resource variable to wrap. op: Optional operation of this variable. Raises: ValueError: If `variable` is not a floating-point resource variable """ if not isinstance(variable, variables.Variable): raise ValueError('variable must be of type tf.ResourceVariable, but got: ' '%s' % variable) if not variable.dtype.is_floating: raise ValueError('variable must be a floating point variable but has ' 'type: %s' % variable.dtype.name) self._variable = variable self._op = op def _should_cast(self): """Returns True if this variable should be casted when accessed.""" autocast_dtype = getattr(_autocast_dtype, 'dtype', None) return autocast_dtype is not None and self.dtype != autocast_dtype @property def dtype(self): """The dtype of the underlying variable, before any casts are done.""" return self._variable.dtype @property def true_dtype(self): """Deprecated alias of `dtype`.""" return self._variable.dtype @property def _cast_dtype(self): dtype = getattr(_autocast_dtype, 'dtype', None) return dtype or self._variable.dtype def value(self): val = self._variable.value() if not self._should_cast(): return val return math_ops.cast(val, self._cast_dtype) def read_value(self): val = self._variable.read_value() return math_ops.cast(val, self._cast_dtype) def sparse_read(self, indices, name=None): """Reads the value of this variable sparsely, using `gather`.""" val = self._variable.sparse_read(indices, name=name) return math_ops.cast(val, self._cast_dtype) def gather_nd(self, indices, name=None): """Gather slices of the variable into a Tensor.""" val = self._variable.gather_nd(indices, name=name) return math_ops.cast(val, self._cast_dtype) def __getattr__(self, name): return getattr(self._variable, name) def _dense_var_to_tensor(self, dtype=None, name=None, as_ref=False): """Converts this variable to a tensor.""" if not self._should_cast(): return ops.convert_to_tensor(self._variable, dtype, name, as_ref) # TODO(reedwm): Support as_ref? assert not as_ref if dtype is not None and not dtype.is_compatible_with(self._cast_dtype): raise ValueError( 'Incompatible type conversion requested to type {!r} for ' 'AutoCastVariable which is casted to type {!r}'.format( dtype.name, self._cast_dtype.name)) val = ops.convert_to_tensor_v2_with_dispatch( self._variable, dtype=self._variable.dtype, name=name) return math_ops.cast(val, self._cast_dtype) def _should_act_as_resource_variable(self): """Pass resource_variable_ops.is_resource_variable check.""" pass def __repr__(self): if context.executing_eagerly() and not self._in_graph_mode: repr_str = ("<AutoCastVariable '{v.name}' shape={v.shape} " 'dtype={v.dtype.name} dtype_to_cast_to={v._cast_dtype.name}, ' 'numpy={np_repr}>') return repr_str.format( v=self, np_repr=ops.numpy_text(self.read_value(), is_repr=True)) else: repr_str = ("<AutoCastVariable '{v.name}' shape={v.shape} " 'dtype={v.dtype.name} dtype_to_cast_to={v._cast_dtype.name}>') return repr_str.format(v=self) # Method delegations: We delegate the following methods to self._variable. # Each of these methods simply calls the same method on self._variable. The # base Variable raises NotImplementedError for most of these, so we must # override them. # # We do not define the following methods from Variable for the following # reasons: # * 'count_up_to': This method only applies to int variables, which cannot # be wrapped with an AutoCastVariable. # * 'ref': Instead we inherit the definition from Variable. # If we defined and delegated to Variable, the ref of an AutoCastVariable # would be the same as the ref of the underlying variable, which would be # strange as they are different Python objects. def set_shape(self, shape): return self._variable.set_shape(self, shape) @property def trainable(self): return self._variable.trainable @property def synchronization(self): return self._variable.synchronization @property def aggregation(self): return self._variable.aggregation def eval(self, session=None): return self._variable.eval(session) def initialized_value(self): return self._variable.initialized_value() @property def initial_value(self): return self._variable.initial_value @property def constraint(self): return self._variable.constraint def _apply_assign_update(self, update_fn, value, use_locking=None, name=None, read_value=True): if ops.executing_eagerly_outside_functions(): assign_op = update_fn(value, use_locking, name, False) if read_value: return create_autocast_variable(self._variable, op=assign_op) return assign_op # Fallback to wrapping the returned variable in graph mode if possible assign_var = update_fn(value, use_locking, name, read_value) if read_value and resource_variable_ops.is_resource_variable(assign_var): return create_autocast_variable(assign_var) return assign_var def _apply_update(self, update_fn, *args, **kwargs): update_var = update_fn(*args, **kwargs) if ops.executing_eagerly_outside_functions(): return self # Fallback to wrapping the returned variable in graph mode if possible if resource_variable_ops.is_resource_variable(update_var): return create_autocast_variable(update_var) return update_var def assign(self, value, use_locking=None, name=None, read_value=True): return self._apply_assign_update(self._variable.assign, value, use_locking, name, read_value) def assign_add(self, delta, use_locking=None, name=None, read_value=True): return self._apply_assign_update(self._variable.assign_add, delta, use_locking, name, read_value) def assign_sub(self, delta, use_locking=None, name=None, read_value=True): return self._apply_assign_update(self._variable.assign_sub, delta, use_locking, name, read_value) def scatter_sub(self, sparse_delta, use_locking=False, name=None): return self._apply_update(self._variable.scatter_sub, sparse_delta, use_locking, name) def scatter_add(self, sparse_delta, use_locking=False, name=None): return self._apply_update(self._variable.scatter_add, sparse_delta, use_locking, name) def scatter_max(self, sparse_delta, use_locking=False, name=None): return self._apply_update(self._variable.scatter_max, sparse_delta, use_locking, name) def scatter_min(self, sparse_delta, use_locking=False, name=None): return self._apply_update(self._variable.scatter_min, sparse_delta, use_locking, name) def scatter_mul(self, sparse_delta, use_locking=False, name=None): return self._apply_update(self._variable.scatter_mul, sparse_delta, use_locking, name) def scatter_div(self, sparse_delta, use_locking=False, name=None): return self._apply_update(self._variable.scatter_div, sparse_delta, use_locking, name) def scatter_update(self, sparse_delta, use_locking=False, name=None): return self._apply_update(self._variable.scatter_update, sparse_delta, use_locking, name) def batch_scatter_update(self, sparse_delta, use_locking=False, name=None): return self._apply_update(self._variable.batch_scatter_update, sparse_delta, use_locking, name) def scatter_nd_sub(self, indices, updates, name=None): return self._apply_update(self._variable.scatter_nd_sub, indices, updates, name) def scatter_nd_add(self, indices, updates, name=None): return self._apply_update(self._variable.scatter_nd_add, indices, updates, name) def scatter_nd_update(self, indices, updates, name=None): return self._apply_update(self._variable.scatter_nd_update, indices, updates, name) def load(self, value, session=None): return self._variable.load(value, session) @property def name(self): return self._variable.name @property def _shared_name(self): return self._variable._shared_name # pylint:disable=protected-access @property def initializer(self): return self._variable.initializer @property def device(self): return self._variable.device @property def op(self): if self._op is not None: return self._op return self._variable.op def _as_graph_element(self): graph_element = self._variable._as_graph_element() # pylint:disable=protected-access if graph_element is None: return self._op return graph_element @property def graph(self): return self._variable.graph @property def shape(self): return self._variable.shape def get_shape(self): return self._variable.get_shape() def _gather_saveables_for_checkpoint(self): # By delegating this method to the wrapped variable, checkpoints with # AutoCastVariables are identical to checkpoints with normal variables. # Therefore models checkpointed with AutoCastVariables can be restored on # models with normal variables, and vice versa. return self._variable._gather_saveables_for_checkpoint() # pylint:disable=protected-access def _map_resources(self, save_options): # By delegating this method to the wrapped variable, SavedModel with # AutoCastVariables are identical to SavedModel with normal variables. obj_map, resource_map = self._variable._map_resources(save_options) # pylint:disable=protected-access obj_map[self] = obj_map[self._variable] return obj_map, resource_map # TODO(reedwm): Maybe encode the fact the variable is an AutoCastVariable in # to_proto(). def to_proto(self, export_scope=None): return self._variable.to_proto(export_scope) def from_proto(self, variable_def, import_scope=None): return self._variable.from_proto(variable_def, import_scope) # Delegate the private attributes _handle_name and _initializer_op to # self._variable. SavedModel sets these attributes when loading a model. For # example, it sets _handle_name here: # https://github.com/tensorflow/tensorflow/blob/db26bd574fa95b5bdd53c08463dd19407cc0297e/tensorflow/python/keras/saving/saved_model/load.py#L211 # We need to expose these attributes on AutoCastVariable as well for # SavedModel to work properly. # TODO(reedwm/kathywu): Find a better way to support SavedModel. Exposing # private attributes is hacky and difficult to maintain. @property def _handle_name(self): return self._variable._handle_name # pylint: disable=protected-access @_handle_name.setter def _handle_name(self, handle_name): self._variable._handle_name = handle_name # pylint: disable=protected-access @property def _initializer_op(self): return self._variable._initializer_op # pylint: disable=protected-access @_initializer_op.setter def _initializer_op(self, initializer_op): self._variable._initializer_op = initializer_op # pylint: disable=protected-access # Operator overloads: # Note we only overload operators that support floating-point types, as # non-float variables cannot be wrapped with an AutoCastVariable. # Also note: We call read_value() instead of value(), because value() causes # gradients not to work properly when TPUStrategy is used: b/143380936 def __add__(self, o): return self.read_value() + o def __radd__(self, o): return o + self.read_value() def __sub__(self, o): return self.read_value() - o def __rsub__(self, o): return o - self.read_value() def __mul__(self, o): return self.read_value() * o def __rmul__(self, o): return o * self.read_value() def __truediv__(self, o): return self.read_value() / o def __rtruediv__(self, o): return o / self.read_value() def __floordiv__(self, o): return self.read_value() // o def __rfloordiv__(self, o): return o // self.read_value() def __mod__(self, o): return self.read_value() % o def __rmod__(self, o): return o % self.read_value() def __lt__(self, o): return self.read_value() < o def __le__(self, o): return self.read_value() <= o def __gt__(self, o): return self.read_value() > o def __ge__(self, o): return self.read_value() >= o def __getitem__(self, o): return self.read_value()[o] def __pow__(self, o, modulo=None): return pow(self.read_value(), o, modulo) def __rpow__(self, o): return pow(o, self.read_value()) def __neg__(self): return -self.read_value() def __abs__(self): return abs(self.read_value()) def __div__(self, o): try: return self.read_value().__div__(o) except AttributeError: # See https://docs.python.org/3/library/constants.html#NotImplemented return NotImplemented def __rdiv__(self, o): try: return self.read_value().__rdiv__(o) except AttributeError: # See https://docs.python.org/3/library/constants.html#NotImplemented return NotImplemented def __matmul__(self, o): try: return self.read_value().__matmul__(o) except AttributeError: # See https://docs.python.org/3/library/constants.html#NotImplemented return NotImplemented def __rmatmul__(self, o): try: return self.read_value().__rmatmul__(o) except AttributeError: # See https://docs.python.org/3/library/constants.html#NotImplemented return NotImplemented # pylint: enable=multiple-statements ops.register_tensor_conversion_function(AutoCastVariable, AutoCastVariable._dense_var_to_tensor) # pylint:disable=protected-access def create_autocast_variable(variable, op=None): """Creates an AutoCastVariable that wraps another variable. This typically just returns `AutoCastVariable(variable)`. But, if the variable is a DistributedVariable or one of its subclasses, we instead dynamically create a class that subclasses from both AutoCastVariable and variable.__class__. This is so the returned variable will still pass `isinstance(variable, variable.__class__)`, which is required for DistributedVariables and its subclasses to work properly. Args: variable: A floating-point resource variable to wrap. op: Optional operation of this variable. Returns: An AutoCastVariable that wraps the variable. """ if not isinstance(variable, (distribute_values.DistributedVariable, ps_distribute_values.AggregatingVariable)): return AutoCastVariable(variable, op=op) class AutoCastDistributedVariable(AutoCastVariable, variable.__class__): """An AutoCastVariable that also subclasses from variable.__class__. variable.__class__ is either a DistributedVariable or an AggregatingVariable. """ def __repr__(self): if issubclass(ps_distribute_values.AggregatingVariable, variable.__class__): # AggregatingVariable's __repr__ simply calls super.__repr__. So we do # the same here for consistency, which calls AutoCastVariable.__repr__. return super(AutoCastDistributedVariable, self).__repr__() # pylint: disable=missing-format-attribute return ('<AutoCastDistributedVariable dtype={v.dtype.name} ' 'dtype_to_cast_to={v._cast_dtype.name} ' 'inner_variable={v._variable}>' ).format(v=self) # pylint: enable=missing-format-attribute return AutoCastDistributedVariable(variable, op=op) class enable_auto_cast_variables(object): # pylint:disable=invalid-name """Context manager which enables the autocasting of `AutoCastVariable`s. Under this context manager, `AutoCastVariable`s will be cast to `dtype` if `dtype` is floating-point. Otherwise, `AutoCastVariable`s will not be cast. """ __slots__ = ['_dtype', '_prev_dtype'] def __init__(self, dtype): if dtype and not dtype.is_floating: dtype = None self._dtype = dtype def __enter__(self): self._prev_dtype = getattr(_autocast_dtype, 'dtype', None) _autocast_dtype.dtype = self._dtype def __exit__(self, type_arg, value_arg, traceback_arg): _autocast_dtype.dtype = self._prev_dtype