EVOLUTION-MANAGER
Edit File: training_distributed_v1.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Part of the Keras training engine related to distributed training. """ # pylint: disable=protected-access from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.distribute import distribute_coordinator as dc from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.distribute import input_lib from tensorflow.python.distribute import reduce_util as ds_reduce_util from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.keras import backend as K from tensorflow.python.keras import callbacks as cbks from tensorflow.python.keras.distribute import distributed_training_utils as dist_utils_v2 from tensorflow.python.keras.distribute import distributed_training_utils_v1 as dist_utils from tensorflow.python.keras.engine import partial_batch_padding_handler as padding_util from tensorflow.python.keras.engine import training_arrays_v1 from tensorflow.python.keras.engine import training_utils_v1 from tensorflow.python.keras.utils.generic_utils import Progbar from tensorflow.python.keras.utils.mode_keys import ModeKeys from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.platform import tf_logging as logging def _per_replica_execution_function(model, mode): exec_func = model._make_execution_function(mode) return (exec_func.inputs, exec_func.outputs, exec_func.updates_op, exec_func.session_kwargs) def _build_model(strategy, model, mode, inputs, targets=None): if model._compile_distribution: dist_utils.clone_model_on_replicas( model, strategy, mode, inputs=inputs, targets=targets) else: dist_utils._build_distributed_network(model, strategy, mode, inputs, targets) def _make_train_step_fn(model, mode, strategy, output_labels): """Create step fn. Arguments: model: a Keras Model instance. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. strategy: a `tf.distribute.Strategy` instance. output_labels: the output labels for the step function. Returns: A step function to run by `tf.distribute.Strategy`. """ def _step_fn(ctx, inputs): """A step fn that returns update ops.""" if isinstance(inputs, (tuple, list)) and len(inputs) == 2: inputs, targets = inputs else: targets = None # When input feature is a dictionary of tensors, dictionary is flattended # to an array and passed as a model input. This results in input mismatch # when model input layer names are not sorted in alphabetical order as # `nest.flatten()`sorts dictionary elements by keys. As so, transform input # tensors into an array and order it along `model._feed_input_names`. if isinstance(inputs, dict): inputs = [inputs[input_name] for input_name in model._feed_input_names] _build_model(strategy, model, mode, inputs, targets) (grouped_inputs, grouped_outputs, grouped_updates, grouped_session_args) = strategy.extended.call_for_each_replica( _per_replica_execution_function, args=(dist_utils.get_distributed_model(model, mode), mode)) (all_inputs, all_outputs, all_updates, all_session_args) = dist_utils.unwrap_values(strategy, grouped_inputs, grouped_outputs, grouped_updates, grouped_session_args) combined_fn = K.function( all_inputs, all_outputs, updates=all_updates, name='distributed_' + str(mode) + '_function', **all_session_args) for label, output in zip(output_labels, combined_fn.outputs): if label == 'loss': reduce_op = ds_reduce_util.ReduceOp.SUM else: # We reduce all other metrics using mean for now. This is temporary # workaround until new metrics are in place. reduce_op = ds_reduce_util.ReduceOp.MEAN ctx.set_last_step_output(label, output, reduce_op) # TODO(priyag, sourabhbajaj): Ignoring these things from the combined_fn: # feed_dict, session kwargs, run options, run_metadata for now. These should # be handled appropriately return combined_fn.updates_op return _step_fn def experimental_tpu_fit_loop(model, dataset, epochs=100, verbose=1, callbacks=None, initial_epoch=0, steps_per_epoch=None, val_dataset=None, validation_steps=None, validation_freq=1): """Fit loop for training with TPU tf.distribute.Strategy. Arguments: model: Keras Model instance. dataset: Dataset that returns inputs and targets epochs: Number of times to iterate over the data verbose: Integer, Verbosity mode, 0, 1 or 2 callbacks: List of callbacks to be called during training initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. val_dataset: Dataset for validation data. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with the default value of `None`. validation_freq: Only relevant if validation data is provided. Integer or `collections.abc.Container` instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. Returns: Returns `None`. Raises: ValueError: in case of invalid arguments. """ mode = ModeKeys.TRAIN current_strategy = model._distribution_strategy iteration_value = min(steps_per_epoch, current_strategy.extended.steps_per_run) steps_per_run = K.variable( value=iteration_value, dtype='int32', name='steps_per_run') # TODO(fchollet): add support for `steps_per_epoch=None` in TPU loops. iterator = dist_utils.get_iterator(dataset, current_strategy) scope = dist_utils.distributed_scope( strategy=current_strategy, learning_phase=1) scope.__enter__() out_labels = model.metrics_names or [] step_fn = _make_train_step_fn(model, ModeKeys.TRAIN, current_strategy, out_labels) # Add initial dummy values for loss and other metric tensors. initial_loop_values = {} initial_loop_values['loss'] = constant_op.constant(1e7) for m in model._get_training_eval_metrics(): tensor = m.result() initial_loop_values[m.name] = array_ops.zeros(tensor.shape, tensor.dtype) ctx = current_strategy.extended.experimental_run_steps_on_iterator( step_fn, iterator, iterations=steps_per_run, initial_loop_values=initial_loop_values) train_op = ctx.run_op output_tensors = ctx.last_step_outputs do_validation = bool(validation_steps) if model._compile_distribution: dist_utils._copy_weights_to_distributed_model(model, mode) callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, epochs=epochs, steps_per_epoch=steps_per_epoch, verbose=verbose, count_mode='steps', mode=mode) # Calculate the steps each time on the device. steps_to_run = ([current_strategy.extended.steps_per_run] * (steps_per_epoch // current_strategy.extended.steps_per_run)) if steps_per_epoch % current_strategy.extended.steps_per_run: steps_to_run.append( steps_per_epoch % current_strategy.extended.steps_per_run) target_steps = len(steps_to_run) callbacks._call_begin_hook(mode) initial_epoch = model._maybe_load_initial_epoch_from_ckpt(initial_epoch, mode) for epoch in range(initial_epoch, epochs): dist_utils._reset_metrics(model) callbacks.on_epoch_begin(epoch) epoch_logs = {} step_index = 0 prev_step_count = None current_step = 0 while current_step < target_steps: step_count = steps_to_run[current_step] batch_logs = {'batch': step_index, 'size': 1, 'num_steps': step_count} callbacks._call_batch_hook(mode, 'begin', step_index, batch_logs) if prev_step_count is None or step_count != prev_step_count: K.get_session().run(steps_per_run.assign(step_count)) prev_step_count = step_count try: _, outputs = K.batch_get_value([train_op, output_tensors]) except errors.OutOfRangeError: logging.warning('Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your dataset ' 'can generate at least `steps_per_epoch * epochs` ' 'batches (in this case, %d batches).' % steps_per_epoch * epochs) break batch_logs.update(outputs) callbacks._call_batch_hook(mode, 'end', step_index, batch_logs) step_index = step_index + step_count current_step += 1 if callbacks.model.stop_training: break if (do_validation and training_utils_v1.should_run_validation(validation_freq, epoch)): logging.info('Running validation at fit epoch: %s', epoch) if model._compile_distribution: # Since we create a new clone from the original model we need to copy # the weights back to the original model before we can run validation. dist_utils._copy_weights_to_original_model(model, ModeKeys.TRAIN) val_outs = experimental_tpu_test_loop( # pylint: disable=undefined-variable model, val_dataset, steps=validation_steps, verbose=verbose, callbacks=callbacks) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for label, val_out in zip(out_labels, val_outs): epoch_logs['val_' + label] = val_out callbacks.on_epoch_end(epoch, epoch_logs) if callbacks.model.stop_training: break model._successful_loop_finish = True callbacks._call_end_hook(mode) if model._compile_distribution: # Copy the weights back from the replicated model to the original model. dist_utils._copy_weights_to_original_model(model, ModeKeys.TRAIN) scope.__exit__(None, None, None) return model.history def experimental_tpu_test_loop(model, dataset, verbose=0, steps=None, callbacks=None): """Test loop for evaluating with TPU tf.distribute.Strategy. Arguments: model: Keras Model instance. dataset: Dataset for input data. verbose: Integer, Verbosity mode 0 or 1. steps: Total number of steps (batches of samples) before declaring predictions finished. Ignored with the default value of `None`. callbacks: List of callbacks to be called during training Returns: Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the outputs. """ mode = ModeKeys.TEST current_strategy = model._distribution_strategy iterator = dist_utils.get_iterator(dataset, current_strategy) scope = dist_utils.distributed_scope( strategy=current_strategy, learning_phase=0) scope.__enter__() out_labels = model.metrics_names def _test_step_fn(inputs): """A fn that returns output of single test step.""" if isinstance(inputs, (tuple, list)) and len(inputs) == 2: inputs, targets = inputs else: targets = None (distribution_strategy_context.get_replica_context().merge_call( _build_model, args=(model, mode, inputs, targets))) (_, outputs, updates, _) = _per_replica_execution_function( dist_utils.get_distributed_model(model, mode), mode) with ops.control_dependencies([updates]): return [array_ops.identity(out) for out in outputs] test_input_data = iterator.get_next() per_replica_outputs = current_strategy.run( _test_step_fn, args=(test_input_data,)) output_tensors = {} for label, output in zip(out_labels, per_replica_outputs): if label == 'loss': reduce_op = ds_reduce_util.ReduceOp.SUM else: # We reduce all other metrics using mean for now. This is temporary # workaround until new metrics are in place. reduce_op = ds_reduce_util.ReduceOp.MEAN output_tensors[label] = current_strategy.reduce(reduce_op, output, axis=None) test_op = control_flow_ops.group(list(output_tensors.values())) if verbose >= 1: progbar = Progbar(target=steps) if model._compile_distribution: dist_utils._copy_weights_to_distributed_model(model, mode) dist_utils._reset_metrics(model) callbacks = cbks.configure_callbacks( callbacks, model, do_validation=False, epochs=1, steps_per_epoch=steps, verbose=verbose, count_mode='steps', mode=ModeKeys.TEST) callbacks._call_begin_hook(mode) outs = [0.] * len(model.metrics_names) if steps is not None: target_steps = steps else: raise ValueError('Number of steps could not be inferred from the data, ' 'please pass the steps argument.') current_step = 0 while current_step < target_steps: batch_logs = {'batch': current_step, 'size': 1} callbacks._call_batch_hook(mode, 'begin', current_step, batch_logs) try: _, batch_outs = K.batch_get_value([test_op, output_tensors]) except errors.OutOfRangeError: warning_msg = ( 'Make sure that your dataset can generate at least ' '`steps` batches (in this case, {} batches).'.format(steps)) logging.warning('Your dataset iterator ran out of data; ' 'interrupting evaluation. ' + warning_msg) target_steps = current_step break for i, label in enumerate(model.metrics_names): if i == 0: # Loss is stateless metrics. outs[i] += batch_outs[label] else: # For all stateful metrics, the aggregation is handled by mirrored vars. outs[i] = batch_outs[label] batch_logs = cbks.make_logs(model, batch_logs, outs, mode) callbacks._call_batch_hook(mode, 'end', current_step, batch_logs) if verbose == 1: progbar.update(current_step + 1) current_step += 1 if verbose >= 1: # Progress bar finishes at the end. progbar.update(target_steps) callbacks._call_end_hook(mode) scope.__exit__(None, None, None) if len(outs) >= 0: outs[0] /= (target_steps) if len(outs) == 1: return outs[0] return outs def experimental_tpu_predict_loop(model, dataset, verbose=0, steps=None, callbacks=None): """Predict loop for predicting with TPU tf.distribute.Strategy. Arguments: model: Keras Model instance. dataset: Dataset for input data. verbose: Integer, Verbosity mode 0 or 1. steps: Total number of steps (batches of samples) before declaring `_predict_loop` finished. Ignored with the default value of `None`. callbacks: List of callbacks to be called during training Returns: Array of predictions (if the model has a single output) or list of arrays of predictions (if the model has multiple outputs). """ mode = ModeKeys.PREDICT dataset_fully_shaped = dist_utils.is_dataset_shape_fully_defined(dataset) padding_handler = None if not dataset_fully_shaped: # TODO(hongjunchoi): Investigate whether operations from # PartialBatchPaddingHandler are unnecessarily pruned out # during graph optimization. padding_handler = padding_util.PartialBatchPaddingHandler( model._feed_output_shapes) batch_size, _, prefetch_buffer = input_lib._get_dataset_attributes(dataset) padding_handler.padded_batch_size = batch_size padding_handler.padding_mask = dataset.reduce(padding_handler.padding_mask, padding_handler.update_mask) dataset = dataset.map(padding_handler.pad_batch) dataset = dataset.unbatch() # Upon this point, it is guaranteed that the dataset does not # have partial batches. Thus, we set `drop_remainder=True` to # get static shape information about the elements in the dataset. dataset = dataset.batch(batch_size, drop_remainder=True) if prefetch_buffer is not None: dataset = dataset.prefetch(prefetch_buffer) current_strategy = model._distribution_strategy iterator = dist_utils.get_iterator(dataset, current_strategy) scope = dist_utils.distributed_scope( strategy=current_strategy, learning_phase=0) scope.__enter__() def _predict_step_fn(inputs): """A fn that returns output of single prediction step.""" (distribution_strategy_context.get_replica_context().merge_call( _build_model, args=(model, mode, inputs))) (_, outputs, updates, _) = _per_replica_execution_function( dist_utils.get_distributed_model(model, mode), mode) with ops.control_dependencies([updates]): return [array_ops.identity(out) for out in outputs] # TODO(hongjunchoi): When numpy array is passed as an input to `predict()` # use numpy arrays directly to avoid cumulating unnecessary input pipeline # ops. predict_input_data = iterator.get_next() per_replica_outputs = current_strategy.run( _predict_step_fn, args=(predict_input_data,)) output_tensors = dist_utils.flatten_per_replica_values( current_strategy, per_replica_outputs) if verbose >= 1: progbar = Progbar(target=steps) if model._compile_distribution: dist_utils._copy_weights_to_distributed_model(model, mode) dist_utils._reset_metrics(model) callbacks = cbks.configure_callbacks( callbacks, model, do_validation=False, epochs=1, steps_per_epoch=steps, verbose=verbose, count_mode='steps', mode=mode) callbacks._call_begin_hook(mode) # Since we do not know how many samples we will see, we cannot pre-allocate # the returned Numpy arrays. Instead, we store one array per batch seen # and concatenate them upon returning. num_model_outputs = len(model.output_names) unconcatenated_outs = [[] for _ in range(num_model_outputs)] if steps is not None: target_steps = steps else: raise ValueError('Number of steps could not be inferred from the data, ' 'please pass the steps argument.') current_step = 0 while current_step < target_steps: batch_logs = {'batch': current_step, 'size': 1} callbacks._call_batch_hook(mode, 'begin', current_step, batch_logs) try: predict_ops = control_flow_ops.group(output_tensors) _, batch_outs = K.batch_get_value([predict_ops, output_tensors]) except errors.OutOfRangeError: warning_msg = ( 'Make sure that your dataset can generate at least ' '`steps` batches (in this case, {} batches).'.format(steps)) logging.warning('Your dataset iterator ran out of data; ' 'interrupting evaluation. ' + warning_msg) break # TODO(priyag): maybe need to unwrap the outputs first for MirroredStrategy. for i in range(num_model_outputs): output_start_index = i * current_strategy.num_replicas_in_sync output_end_index = ( output_start_index + current_strategy.num_replicas_in_sync) single_model_output = batch_outs[output_start_index:output_end_index] unconcatenated_outs[i].extend(single_model_output) batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', current_step, batch_logs) if verbose == 1: progbar.update(current_step + 1) current_step += 1 if verbose >= 1: # Progress bar finishes at the end. progbar.update(current_step) callbacks._call_end_hook(mode) scope.__exit__(None, None, None) if len(unconcatenated_outs) == 1: prediction_result = np.concatenate(unconcatenated_outs[0], axis=0) else: prediction_result = [ np.concatenate(out, axis=0) for out in unconcatenated_outs ] if padding_handler: prediction_result = padding_handler.apply_mask(prediction_result) return prediction_result class DistributionSingleWorkerTrainingLoop(training_utils_v1.TrainingLoop): """Training loop for distribution strategy with single worker.""" def fit(self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs): """Fit loop for Distribution Strategies.""" dist_utils.validate_callbacks(input_callbacks=callbacks, optimizer=model.optimizer) dist_utils.validate_inputs(x, y) batch_size, steps_per_epoch = dist_utils.process_batch_and_step_size( model._distribution_strategy, x, batch_size, steps_per_epoch, ModeKeys.TRAIN, validation_split=validation_split) batch_size = model._validate_or_infer_batch_size( batch_size, steps_per_epoch, x) dataset = model._distribution_standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, validation_split=validation_split, shuffle=shuffle, epochs=epochs) if not dist_utils.is_distributing_by_cloning(model): with model._distribution_strategy.scope(): (dataset, _, _) = model._standardize_user_data( dataset, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, validation_split=validation_split, shuffle=shuffle) val_dataset = None if validation_data: val_x, val_y, val_sample_weights = ( training_utils_v1.unpack_validation_data(validation_data)) dist_utils.validate_inputs(val_x, val_y) _, validation_steps = dist_utils.process_batch_and_step_size( model._distribution_strategy, val_x, batch_size, validation_steps, ModeKeys.TEST) val_dataset = model._distribution_standardize_user_data( val_x, val_y, sample_weight=val_sample_weights, class_weight=None, batch_size=batch_size, validation_split=validation_split, shuffle=shuffle, allow_partial_batch=True) elif validation_split: raise ValueError('validation_split argument is not supported with ' 'distribution strategies.') if dist_utils_v2.is_tpu_strategy(model._distribution_strategy): steps_per_epoch = training_utils_v1.infer_steps_for_dataset( model, dataset, steps_per_epoch, epochs, steps_name='steps_per_epoch') if steps_per_epoch is None: raise ValueError('Number of steps could not be inferred from the data, ' 'please pass the steps_per_epoch argument.') if not context.executing_eagerly(): # Run TPU training in a custom loop in graph mode. return experimental_tpu_fit_loop( model, dataset, epochs=epochs, verbose=verbose, callbacks=callbacks, val_dataset=val_dataset, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq) return training_arrays_v1.fit_loop( model, dataset, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_inputs=val_dataset, shuffle=shuffle, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq, steps_name='steps_per_epoch') def evaluate(self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, **kwargs): """Evaluate loop for Distribution Strategies.""" dist_utils.validate_inputs(x, y) batch_size, steps = dist_utils.process_batch_and_step_size( model._distribution_strategy, x, batch_size, steps, ModeKeys.TEST) batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) dataset = model._distribution_standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size, allow_partial_batch=True) if dist_utils_v2.is_tpu_strategy(model._distribution_strategy): steps = training_utils_v1.infer_steps_for_dataset( model, dataset, steps, steps_name='steps') if steps is None: raise ValueError('Number of steps could not be inferred from the data, ' 'please pass the steps argument.') if not context.executing_eagerly(): # Run TPU evaluation in a custom loop in graph mode. return experimental_tpu_test_loop( model, dataset, verbose=verbose, steps=steps, callbacks=callbacks) return training_arrays_v1.test_loop( model, inputs=dataset, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks) def predict(self, model, x, batch_size=None, verbose=0, steps=None, callbacks=None, **kwargs): """Predict loop for Distribution Strategies.""" dist_utils.validate_inputs(x=x, y=None) batch_size, steps = dist_utils.process_batch_and_step_size( model._distribution_strategy, x, batch_size, steps, ModeKeys.PREDICT) batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) dataset = model._distribution_standardize_user_data( x, batch_size=batch_size, allow_partial_batch=True) if dist_utils_v2.is_tpu_strategy(model._distribution_strategy): steps = training_utils_v1.infer_steps_for_dataset( model, dataset, steps, steps_name='steps') if steps is None: raise ValueError('Number of steps could not be inferred from the data, ' 'please pass the steps argument.') if not context.executing_eagerly(): return experimental_tpu_predict_loop( model, dataset, verbose=verbose, steps=steps, callbacks=callbacks) return training_arrays_v1.predict_loop( model, dataset, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks) def _train_with_multi_worker(method): """Decorator that handles multi worker training with distribution strategy.""" def wrapper(model, **kwargs): def _worker_fn(_): callbacks = kwargs.pop('callbacks', None) filtered_callbacks = dist_utils.filter_distributed_callbacks( callbacks, model) kwargs['callbacks'] = filtered_callbacks return method(model, **kwargs) return dc.run_distribute_coordinator( _worker_fn, model._distribution_strategy, mode=dc.CoordinatorMode.INDEPENDENT_WORKER) return wrapper class DistributionMultiWorkerTrainingLoop(training_utils_v1.TrainingLoop): """Training loop for distribution strategy with multiple worker.""" def __init__(self, single_worker_loop): self._single_worker_loop = single_worker_loop def fit(self, *args, **kwargs): return _train_with_multi_worker(self._single_worker_loop.fit)( *args, **kwargs) def evaluate(self, *args, **kwargs): return _train_with_multi_worker(self._single_worker_loop.evaluate)( *args, **kwargs) def predict(self, *args, **kwargs): # Currently predict is still using the single worker implementation. return self._single_worker_loop.predict(*args, **kwargs)