EVOLUTION-MANAGER
Edit File: multi_worker_testing_utils.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for testing multi-worker distribution strategies with Keras.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python import keras from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.keras.optimizer_v2 import gradient_descent from tensorflow.python.ops import array_ops from tensorflow.python.ops import random_ops def mnist_synthetic_dataset(batch_size, steps_per_epoch): """Generate synthetic MNIST dataset for testing.""" # train dataset x_train = array_ops.ones([batch_size * steps_per_epoch, 28, 28, 1], dtype=dtypes.float32) y_train = array_ops.ones([batch_size * steps_per_epoch, 1], dtype=dtypes.int32) train_ds = dataset_ops.Dataset.from_tensor_slices((x_train, y_train)) train_ds = train_ds.repeat() # train_ds = train_ds.shuffle(100) train_ds = train_ds.batch(64, drop_remainder=True) # eval dataset x_test = random_ops.random_uniform([10000, 28, 28, 1], dtype=dtypes.float32) y_test = random_ops.random_uniform([10000, 1], minval=0, maxval=9, dtype=dtypes.int32) eval_ds = dataset_ops.Dataset.from_tensor_slices((x_test, y_test)) eval_ds = eval_ds.batch(64, drop_remainder=True) return train_ds, eval_ds def get_mnist_model(input_shape): """Define a deterministically-initialized CNN model for MNIST testing.""" inputs = keras.Input(shape=input_shape) x = keras.layers.Conv2D( 32, kernel_size=(3, 3), activation="relu", kernel_initializer=keras.initializers.TruncatedNormal(seed=99))(inputs) x = keras.layers.BatchNormalization()(x) x = keras.layers.Flatten()(x) + keras.layers.Flatten()(x) x = keras.layers.Dense( 10, activation="softmax", kernel_initializer=keras.initializers.TruncatedNormal(seed=99))(x) model = keras.Model(inputs=inputs, outputs=x) # TODO(yuefengz): optimizer with slot variables doesn't work because of # optimizer's bug. # TODO(yuefengz): we should not allow non-v2 optimizer. model.compile( loss=keras.losses.sparse_categorical_crossentropy, optimizer=gradient_descent.SGD(learning_rate=0.001), metrics=["accuracy"]) return model