EVOLUTION-MANAGER
Edit File: cifar10.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """CIFAR10 small images classification dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from tensorflow.python.keras import backend as K from tensorflow.python.keras.datasets.cifar import load_batch from tensorflow.python.keras.utils.data_utils import get_file from tensorflow.python.util.tf_export import keras_export @keras_export('keras.datasets.cifar10.load_data') def load_data(): """Loads [CIFAR10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html). This is a dataset of 50,000 32x32 color training images and 10,000 test images, labeled over 10 categories. See more info at the [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html). Returns: Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. **x_train, x_test**: uint8 arrays of RGB image data with shape `(num_samples, 3, 32, 32)` if `tf.keras.backend.image_data_format()` is `'channels_first'`, or `(num_samples, 32, 32, 3)` if the data format is `'channels_last'`. **y_train, y_test**: uint8 arrays of category labels (integers in range 0-9) each with shape (num_samples, 1). """ dirname = 'cifar-10-batches-py' origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file( dirname, origin=origin, untar=True, file_hash= '6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce') num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples,), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_test = x_test.astype(x_train.dtype) y_test = y_test.astype(y_train.dtype) return (x_train, y_train), (x_test, y_test)