EVOLUTION-MANAGER
Edit File: take_while_ops.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """take-while dataset transformation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import gen_experimental_dataset_ops from tensorflow.python.util.tf_export import tf_export class _TakeWhileDataset(dataset_ops.UnaryUnchangedStructureDataset): """A dataset that stops iteration when `predicate` returns false.""" def __init__(self, input_dataset, predicate): """See `take_while()` for details.""" self._input_dataset = input_dataset wrapped_func = dataset_ops.StructuredFunctionWrapper( predicate, "tf.data.experimental.take_while()", dataset=self._input_dataset) if not wrapped_func.output_structure.is_compatible_with( tensor_spec.TensorSpec([], dtypes.bool)): raise ValueError("`predicate` must return a scalar boolean tensor.") self._predicate = wrapped_func var_tensor = gen_experimental_dataset_ops.take_while_dataset( self._input_dataset._variant_tensor, # pylint: disable=protected-access other_arguments=self._predicate.function.captured_inputs, predicate=self._predicate.function, **self._flat_structure) super(_TakeWhileDataset, self).__init__(input_dataset, var_tensor) def _functions(self): return [self._predicate] @tf_export("data.experimental.take_while") def take_while(predicate): """A transformation that stops dataset iteration based on a `predicate`. Args: predicate: A function that maps a nested structure of tensors (having shapes and types defined by `self.output_shapes` and `self.output_types`) to a scalar `tf.bool` tensor. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ def _apply_fn(dataset): return _TakeWhileDataset(dataset, predicate) return _apply_fn