EVOLUTION-MANAGER
Edit File: stats_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Experimental API for gathering statistics from `tf.data` pipelines.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import gen_experimental_dataset_ops from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export @deprecation.deprecated(None, "Use `tf.data.experimental.StatsOptions`.") def set_stats_aggregator(stats_aggregator, prefix="", counter_prefix=""): """Set the given `stats_aggregator` for aggregating the input dataset stats. Args: stats_aggregator: A `tf.data.experimental.StatsAggregator` object. prefix: (Optional) String, all statistics recorded for the input `dataset` will have given `prefix` prepend with the name. counter_prefix: (Optional) String, all statistics recorded as `counters` will have the given `prefix` for the counter. Defaults to "/tensorflow". Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ def _apply_fn(dataset): return dataset_ops._SetStatsAggregatorDataset( # pylint: disable=protected-access dataset, stats_aggregator, prefix, counter_prefix) return _apply_fn @tf_export("data.experimental.bytes_produced_stats") def bytes_produced_stats(tag): """Records the number of bytes produced by each element of the input dataset. To consume the statistics, associate a `StatsAggregator` with the output dataset. Args: tag: String. All statistics recorded by the returned transformation will be associated with the given `tag`. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ def _apply_fn(dataset): return _StatsDataset( dataset, gen_experimental_dataset_ops.bytes_produced_stats_dataset, tag) return _apply_fn @tf_export("data.experimental.latency_stats") def latency_stats(tag): """Records the latency of producing each element of the input dataset. To consume the statistics, associate a `StatsAggregator` with the output dataset. Args: tag: String. All statistics recorded by the returned transformation will be associated with the given `tag`. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ def _apply_fn(dataset): return _StatsDataset( dataset, gen_experimental_dataset_ops.latency_stats_dataset, tag) return _apply_fn class _StatsDataset(dataset_ops.UnaryUnchangedStructureDataset): """A `Dataset` that acts as an identity, and also records statistics.""" def __init__(self, input_dataset, op_function, tag): self._input_dataset = input_dataset self._op_function = op_function self._tag = ops.convert_to_tensor(tag, dtype=dtypes.string) variant_tensor = self._op_function( self._input_dataset._variant_tensor, # pylint: disable=protected-access self._tag, **self._flat_structure) super(_StatsDataset, self).__init__(input_dataset, variant_tensor)