EVOLUTION-MANAGER
Edit File: random_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Datasets for random number generators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from tensorflow.python import tf2 from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.util import random_seed from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import gen_experimental_dataset_ops from tensorflow.python.util.tf_export import tf_export @tf_export("data.experimental.RandomDataset", v1=[]) class RandomDatasetV2(dataset_ops.DatasetSource): """A `Dataset` of pseudorandom values.""" def __init__(self, seed=None): """A `Dataset` of pseudorandom values.""" self._seed, self._seed2 = random_seed.get_seed(seed) variant_tensor = gen_experimental_dataset_ops.random_dataset( seed=self._seed, seed2=self._seed2, **self._flat_structure) super(RandomDatasetV2, self).__init__(variant_tensor) @property def element_spec(self): return tensor_spec.TensorSpec([], dtypes.int64) @tf_export(v1=["data.experimental.RandomDataset"]) class RandomDatasetV1(dataset_ops.DatasetV1Adapter): """A `Dataset` of pseudorandom values.""" @functools.wraps(RandomDatasetV2.__init__) def __init__(self, seed=None): wrapped = RandomDatasetV2(seed) super(RandomDatasetV1, self).__init__(wrapped) if tf2.enabled(): RandomDataset = RandomDatasetV2 else: RandomDataset = RandomDatasetV1