EVOLUTION-MANAGER
Edit File: pooling_ops_common.h
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_CORE_KERNELS_POOLING_OPS_COMMON_H_ #define TENSORFLOW_CORE_KERNELS_POOLING_OPS_COMMON_H_ #include <vector> #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define EIGEN_USE_GPU #endif // GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/kernels/avgpooling_op.h" #include "tensorflow/core/kernels/maxpooling_op.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/util/padding.h" #include "tensorflow/core/util/tensor_format.h" #include "tensorflow/core/util/work_sharder.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "tensorflow/core/kernels/maxpooling_op_gpu.h" #endif // GOOGLE_CUDA || TENSORFLOW_USE_ROCM namespace tensorflow { typedef Eigen::GpuDevice GPUDevice; // A helper class to manage sizes and shapes for pooling operations. struct PoolParameters { // Updates context->status if there is an invalid input. // explicit_paddings has eight elements if padding==EXPLIICT, and zero // elements otherwise. PoolParameters(OpKernelContext* context, const std::vector<int32>& ksize, const std::vector<int32>& stride, Padding padding, std::vector<int64> explicit_paddings, TensorFormat data_format, const TensorShape& tensor_in_shape); // Returns the shape of the output for "forward" pooling operations. TensorShape forward_output_shape(); int depth; int tensor_in_cols; int tensor_in_rows; int tensor_in_batch; int window_rows; int window_cols; int depth_window; int row_stride; int col_stride; int depth_stride; int64 out_height; int64 out_width; int out_depth; int64 pad_top; int64 pad_bottom; int64 pad_left; int64 pad_right; int pad_depth; TensorFormat data_format; }; // Checks if the sizes of the paddings are less than the size of window. // This is required for MaxPool because it pads with -inf, so the pooling // window cannot fully cover the padded area. Status CheckPaddingSize(PoolParameters& params); // An implementation of MaxPooling (forward). // TODO (yongtang): Remove MaxPoolingOp and use MaxPoolingV2Op, // QuantizedMaxPoolingOp depends on MaxPoolingOp so keep intact for now template <typename Device, typename T> class MaxPoolingOp : public OpKernel { public: explicit MaxPoolingOp(OpKernelConstruction* context) : OpKernel(context) { string data_format; auto status = context->GetAttr("data_format", &data_format); if (status.ok()) { OP_REQUIRES(context, FormatFromString(data_format, &data_format_), errors::InvalidArgument("Invalid data format")); OP_REQUIRES( context, data_format_ == FORMAT_NHWC, errors::InvalidArgument("Default MaxPoolingOp only supports NHWC ", "on device type ", DeviceTypeString(context->device_type()))); } else { data_format_ = FORMAT_NHWC; } OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); OP_REQUIRES(context, ksize_.size() == 4, errors::InvalidArgument("Sliding window ksize field must " "specify 4 dimensions")); for (int i = 0; i < ksize_.size(); ++i) { OP_REQUIRES(context, ksize_[i] > 0, errors::InvalidArgument("Sliding window ksize for dimension ", i, " was zero.")); } OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_)); OP_REQUIRES(context, stride_.size() == 4, errors::InvalidArgument("Sliding window stride field must " "specify 4 dimensions")); OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_)); if (padding_ == Padding::EXPLICIT) { OP_REQUIRES_OK( context, context->GetAttr("explicit_paddings", &explicit_paddings_)); } OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, errors::Unimplemented( "Pooling is not yet supported on the batch dimension.")); } void Compute(OpKernelContext* context) override { const Tensor& tensor_in = context->input(0); PoolParameters params{ context, ksize_, stride_, padding_, explicit_paddings_, FORMAT_NHWC, tensor_in.shape()}; if (!context->status().ok()) { return; } Tensor* output = nullptr; OP_REQUIRES_OK(context, context->allocate_output( 0, params.forward_output_shape(), &output)); if (params.depth_window > 1) { // Validate spec against the current implementation. A // relaxation of these requirements would be ideal. OP_REQUIRES(context, params.depth % params.depth_window == 0, errors::Unimplemented( "Depthwise max pooling requires " "the depth window to evenly divide the input depth.")); OP_REQUIRES( context, params.depth_window == params.depth_stride, errors::Unimplemented("Depthwise max pooling requires " "the depth window to equal the depth stride.")); OP_REQUIRES( context, padding_ != EXPLICIT, errors::Unimplemented("Depthwise max pooling does not support " "explicit padding.")); DepthwiseMaxPool(context, output, tensor_in, params); } else { // MaxPoolingOp is only called on the GPU when the eigen_tensor label // is used. In this case, explicit padding is not supported if (std::is_same<Device, GPUDevice>::value && padding_ == Padding::EXPLICIT) { context->SetStatus(errors::Unimplemented( "MaxPoolingOp does not support explicit padding.")); return; } SpatialMaxPool(context, output, tensor_in, params, padding_); } } private: // Single-threaded implementation of DepthwiseMaxPool which // does not handle all of the same options as SpatialMaxPool // (strict assumptions on no padding, stride). // // TODO(vrv): implement a more general depthwise-max pool that works // on GPU as well. void DepthwiseMaxPool(OpKernelContext* context, Tensor* output, const Tensor& tensor_in, const PoolParameters& params) { Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> in_by_pool(tensor_in.flat<T>().data(), params.depth_window, tensor_in.NumElements() / params.depth_window); Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> out_by_pool( output->flat<T>().data(), 1, output->NumElements()); out_by_pool = in_by_pool.colwise().maxCoeff(); } void SpatialMaxPool(OpKernelContext* context, Tensor* output, const Tensor& tensor_in, const PoolParameters& params, const Padding& padding) { // On GPU, use Eigen's Spatial Max Pooling. On CPU, use an // EigenMatrix version that is currently faster than Eigen's // Spatial MaxPooling implementation. // // TODO(vrv): Remove this once we no longer need it. if (std::is_same<Device, GPUDevice>::value) { Eigen::PaddingType pt = BrainPadding2EigenPadding(padding); functor::SpatialMaxPooling<Device, T>()( context->eigen_device<Device>(), output->tensor<T, 4>(), tensor_in.tensor<T, 4>(), params.window_rows, params.window_cols, params.row_stride, params.col_stride, pt); } else { typedef Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> ConstEigenMatrixMap; typedef Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> EigenMatrixMap; ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), params.depth, params.tensor_in_cols * params.tensor_in_rows * params.tensor_in_batch); EigenMatrixMap out_mat( output->flat<T>().data(), params.depth, params.out_width * params.out_height * params.tensor_in_batch); const DeviceBase::CpuWorkerThreads& worker_threads = *(context->device()->tensorflow_cpu_worker_threads()); // The following code basically does the following: // 1. Flattens the input and output tensors into two dimensional arrays. // tensor_in_as_matrix: // depth by (tensor_in_cols * tensor_in_rows * tensor_in_batch) // output_as_matrix: // depth by (out_width * out_height * tensor_in_batch) // // 2. Walks through the set of columns in the flattened // tensor_in_as_matrix, // and updates the corresponding column(s) in output_as_matrix with the // max value. auto shard = [¶ms, &in_mat, &out_mat](int64 start, int64 limit) { const int32 in_rows = params.tensor_in_rows; const int32 in_cols = params.tensor_in_cols; const int32 pad_top = params.pad_top; const int32 pad_left = params.pad_left; const int32 window_rows = params.window_rows; const int32 window_cols = params.window_cols; const int32 row_stride = params.row_stride; const int32 col_stride = params.col_stride; const int32 out_height = params.out_height; const int32 out_width = params.out_width; { // Initializes the output tensor with MIN<T>. const int32 output_image_size = out_height * out_width * params.depth; EigenMatrixMap out_shard(out_mat.data() + start * output_image_size, 1, (limit - start) * output_image_size); out_shard.setConstant(Eigen::NumTraits<T>::lowest()); } for (int32 b = start; b < limit; ++b) { const int32 out_offset_batch = b * out_height; for (int32 h = 0; h < in_rows; ++h) { for (int32 w = 0; w < in_cols; ++w) { // (h_start, h_end) * (w_start, w_end) is the range that the input // vector projects to. const int32 hpad = h + pad_top; const int32 wpad = w + pad_left; const int32 h_start = (hpad < window_rows) ? 0 : (hpad - window_rows) / row_stride + 1; const int32 h_end = std::min(hpad / row_stride + 1, out_height); const int32 w_start = (wpad < window_cols) ? 0 : (wpad - window_cols) / col_stride + 1; const int32 w_end = std::min(wpad / col_stride + 1, out_width); // compute elementwise max const int32 in_offset = (b * in_rows + h) * in_cols + w; for (int32 ph = h_start; ph < h_end; ++ph) { const int32 out_offset_base = (out_offset_batch + ph) * out_width; for (int32 pw = w_start; pw < w_end; ++pw) { const int32 out_offset = out_offset_base + pw; out_mat.col(out_offset) = out_mat.col(out_offset).cwiseMax(in_mat.col(in_offset)); } } } } } }; // TODO(andydavis) Consider sharding across batch x rows x cols. // TODO(andydavis) Consider a higher resolution shard cost model. const int64 shard_cost = params.tensor_in_rows * params.tensor_in_cols * params.depth; Shard(worker_threads.num_threads, worker_threads.workers, params.tensor_in_batch, shard_cost, shard); } } std::vector<int32> ksize_; std::vector<int32> stride_; Padding padding_; std::vector<int64> explicit_paddings_; TensorFormat data_format_; }; template <typename Device> struct LaunchMaxPoolingNoMask_NCHW_VECT_C; #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM template <> struct LaunchMaxPoolingNoMask_NCHW_VECT_C<Eigen::GpuDevice> { static void launch(OpKernelContext* context, const PoolParameters& params, const Tensor& input, Tensor* output) { #if GOOGLE_CUDA bool status = functor::MaxPoolForwardNoMask_NCHW_VECT_C()( reinterpret_cast<const int32*>(input.flat<qint8>().data()), params.tensor_in_batch, params.tensor_in_rows, params.tensor_in_cols, params.depth, params.out_height, params.out_width, params.window_rows, params.window_cols, params.row_stride, params.col_stride, params.pad_top, params.pad_left, reinterpret_cast<int32*>(output->flat<qint8>().data()), context->eigen_gpu_device()); if (!status) { context->SetStatus(errors::Internal( "Failed launching LaunchMaxPoolingNoMask_NCHW_VECT_C")); } #else // ROCm TODO: add support __vmaxs4 on ROCm context->SetStatus(errors::Internal( "Failed launching LaunchMaxPoolingNoMask_NCHW_VECT_C")); #endif // GOOGLE_CUDA } }; #endif // GOOGLE_CUDA || TENSORFLOW_USE_ROCM template <typename Device, typename T> class MaxPoolingV2Op : public OpKernel { public: explicit MaxPoolingV2Op(OpKernelConstruction* context) : OpKernel(context) { string data_format; auto status = context->GetAttr("data_format", &data_format); if (status.ok()) { OP_REQUIRES(context, FormatFromString(data_format, &data_format_), errors::InvalidArgument("Invalid data format")); OP_REQUIRES( context, data_format_ == FORMAT_NHWC || data_format_ == FORMAT_NCHW_VECT_C, errors::InvalidArgument( "MaxPoolingV2Op only supports NHWC or NCHW_VECT_C. Got: ", data_format)); } else { data_format_ = FORMAT_NHWC; } if (context->num_inputs() == 1) { OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); OP_REQUIRES(context, ksize_.size() == 4, errors::InvalidArgument("Sliding window ksize field must " "specify 4 dimensions")); OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_)); OP_REQUIRES(context, stride_.size() == 4, errors::InvalidArgument("Sliding window stride field must " "specify 4 dimensions")); OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, errors::Unimplemented( "Pooling is not yet supported on the batch dimension.")); } OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_)); } void Compute(OpKernelContext* context) override { const Tensor& tensor_in = context->input(0); std::vector<int32> ksize = ksize_; std::vector<int32> stride = stride_; if (context->num_inputs() != 1) { const Tensor& tensor_ksize = context->input(1); auto value_ksize = tensor_ksize.flat<int32>(); ksize.resize(tensor_ksize.shape().num_elements()); std::copy_n(&value_ksize(0), ksize.size(), ksize.begin()); const Tensor& tensor_stride = context->input(2); auto value_stride = tensor_stride.flat<int32>(); stride.resize(tensor_stride.shape().num_elements()); std::copy_n(&value_stride(0), stride.size(), stride.begin()); } OP_REQUIRES(context, ksize.size() == 4, errors::InvalidArgument("Sliding window ksize field must " "specify 4 dimensions")); OP_REQUIRES(context, stride.size() == 4, errors::InvalidArgument("Sliding window stride field must " "specify 4 dimensions")); OP_REQUIRES(context, ksize[0] == 1 && stride[0] == 1, errors::Unimplemented( "Pooling is not yet supported on the batch dimension.")); PoolParameters params{ context, ksize, stride, padding_, /*explicit_paddings=*/{}, data_format_, tensor_in.shape(), }; if (!context->status().ok()) { return; } Tensor* output = nullptr; OP_REQUIRES_OK(context, context->allocate_output( 0, params.forward_output_shape(), &output)); if (params.depth_window > 1) { // Validate spec against the current implementation. A // relaxation of these requirements would be ideal. OP_REQUIRES(context, params.depth % params.depth_window == 0, errors::Unimplemented( "Depthwise max pooling requires " "the depth window to evenly divide the input depth.")); OP_REQUIRES( context, params.depth_window == params.depth_stride, errors::Unimplemented("Depthwise max pooling requires " "the depth window to equal the depth stride.")); DepthwiseMaxPool(context, output, tensor_in, params); } else { SpatialMaxPool(context, output, tensor_in, params, padding_); } } private: // Single-threaded implementation of DepthwiseMaxPool which // does not handle all of the same options as SpatialMaxPool // (strict assumptions on no padding, stride). // // TODO(vrv): implement a more general depthwise-max pool that works // on GPU as well. void DepthwiseMaxPool(OpKernelContext* context, Tensor* output, const Tensor& tensor_in, const PoolParameters& params) { Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> in_by_pool(tensor_in.flat<T>().data(), params.depth_window, tensor_in.NumElements() / params.depth_window); Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> out_by_pool( output->flat<T>().data(), 1, output->NumElements()); out_by_pool = in_by_pool.colwise().maxCoeff(); } void SpatialMaxPool(OpKernelContext* context, Tensor* output, const Tensor& tensor_in, const PoolParameters& params, const Padding& padding) { // On GPU, use Eigen's Spatial Max Pooling. On CPU, use an // EigenMatrix version that is currently faster than Eigen's // Spatial MaxPooling implementation. // // TODO(vrv): Remove this once we no longer need it. #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM if (std::is_same<Device, GPUDevice>::value) { Eigen::PaddingType pt = BrainPadding2EigenPadding(padding); if (std::is_same<T, qint8>::value) { LaunchMaxPoolingNoMask_NCHW_VECT_C<GPUDevice>::launch( context, params, tensor_in, output); } else { functor::SpatialMaxPooling<Device, T>()( context->eigen_device<Device>(), output->tensor<T, 4>(), tensor_in.tensor<T, 4>(), params.window_rows, params.window_cols, params.row_stride, params.col_stride, pt); } } else #endif { typedef Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> ConstEigenMatrixMap; typedef Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> EigenMatrixMap; ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), params.depth, params.tensor_in_cols * params.tensor_in_rows * params.tensor_in_batch); EigenMatrixMap out_mat( output->flat<T>().data(), params.depth, params.out_width * params.out_height * params.tensor_in_batch); const DeviceBase::CpuWorkerThreads& worker_threads = *(context->device()->tensorflow_cpu_worker_threads()); // The following code basically does the following: // 1. Flattens the input and output tensors into two dimensional arrays. // tensor_in_as_matrix: // depth by (tensor_in_cols * tensor_in_rows * tensor_in_batch) // output_as_matrix: // depth by (out_width * out_height * tensor_in_batch) // // 2. Walks through the set of columns in the flattened // tensor_in_as_matrix, // and updates the corresponding column(s) in output_as_matrix with the // max value. auto shard = [¶ms, &in_mat, &out_mat](int64 start, int64 limit) { const int32 in_rows = params.tensor_in_rows; const int32 in_cols = params.tensor_in_cols; const int32 pad_top = params.pad_top; const int32 pad_left = params.pad_left; const int32 window_rows = params.window_rows; const int32 window_cols = params.window_cols; const int32 row_stride = params.row_stride; const int32 col_stride = params.col_stride; const int32 out_height = params.out_height; const int32 out_width = params.out_width; { // Initializes the output tensor with MIN<T>. const int32 output_image_size = out_height * out_width * params.depth; EigenMatrixMap out_shard(out_mat.data() + start * output_image_size, 1, (limit - start) * output_image_size); out_shard.setConstant(Eigen::NumTraits<T>::lowest()); } for (int32 b = start; b < limit; ++b) { const int32 out_offset_batch = b * out_height; for (int32 h = 0; h < in_rows; ++h) { for (int32 w = 0; w < in_cols; ++w) { // (h_start, h_end) * (w_start, w_end) is the range that the input // vector projects to. const int32 hpad = h + pad_top; const int32 wpad = w + pad_left; const int32 h_start = (hpad < window_rows) ? 0 : (hpad - window_rows) / row_stride + 1; const int32 h_end = std::min(hpad / row_stride + 1, out_height); const int32 w_start = (wpad < window_cols) ? 0 : (wpad - window_cols) / col_stride + 1; const int32 w_end = std::min(wpad / col_stride + 1, out_width); // compute elementwise max const int32 in_offset = (b * in_rows + h) * in_cols + w; for (int32 ph = h_start; ph < h_end; ++ph) { const int32 out_offset_base = (out_offset_batch + ph) * out_width; for (int32 pw = w_start; pw < w_end; ++pw) { const int32 out_offset = out_offset_base + pw; out_mat.col(out_offset) = out_mat.col(out_offset).cwiseMax(in_mat.col(in_offset)); } } } } } }; // TODO(andydavis) Consider sharding across batch x rows x cols. // TODO(andydavis) Consider a higher resolution shard cost model. const int64 shard_cost = params.tensor_in_rows * params.tensor_in_cols * params.depth; Shard(worker_threads.num_threads, worker_threads.workers, params.tensor_in_batch, shard_cost, shard); } } std::vector<int32> ksize_; std::vector<int32> stride_; Padding padding_; TensorFormat data_format_; }; template <typename Device, typename T> void SpatialAvgPool(OpKernelContext* context, Tensor* output, const Tensor& input, const PoolParameters& params, const Padding& padding) { typedef Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> ConstEigenMatrixMap; typedef Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> EigenMatrixMap; auto in_flat = input.flat<T>(); auto out_flat = output->flat<T>(); auto shard = [¶ms, &in_flat, &out_flat](int64 start, int64 limit) { // Calculate indices for this shards chunk of work. const int64 input_image_size = params.tensor_in_rows * params.tensor_in_cols * params.depth; const int64 output_image_size = params.out_width * params.out_height * params.depth; const int64 shard_batch_size = limit - start; ConstEigenMatrixMap in_mat( in_flat.data() + start * input_image_size, params.depth, params.tensor_in_cols * params.tensor_in_rows * shard_batch_size); EigenMatrixMap out_mat( out_flat.data() + start * output_image_size, params.depth, params.out_width * params.out_height * shard_batch_size); Eigen::Matrix<T, Eigen::Dynamic, 1> out_count(out_mat.cols()); out_count.setZero(); // Initializes output to zero. out_mat.setZero(); // The following code basically does the following: // 1. Flattens the input and output tensors into two dimensional arrays. // tensor_in_as_matrix: // depth by (tensor_in_cols * tensor_in_rows * tensor_in_batch) // output_as_matrix: // depth by (out_width * out_height * tensor_in_batch) // // 2. Walks through the set of columns in the flattened // tensor_in_as_matrix, // and updates the corresponding column(s) in output_as_matrix with the // average value. for (int b = 0; b < shard_batch_size; ++b) { for (int h = 0; h < params.tensor_in_rows; ++h) { for (int w = 0; w < params.tensor_in_cols; ++w) { // (h_start, h_end) * (w_start, w_end) is the range that the input // vector projects to. const int hpad = h + params.pad_top; const int wpad = w + params.pad_left; const int h_start = (hpad < params.window_rows) ? 0 : (hpad - params.window_rows) / params.row_stride + 1; const int h_end = std::min<int>(hpad / params.row_stride + 1, params.out_height); const int w_start = (wpad < params.window_cols) ? 0 : (wpad - params.window_cols) / params.col_stride + 1; const int w_end = std::min<int>(wpad / params.col_stride + 1, params.out_width); const int in_offset = (b * params.tensor_in_rows + h) * params.tensor_in_cols + w; Eigen::DSizes<Eigen::DenseIndex, 2> in_indices(0, in_offset); for (int ph = h_start; ph < h_end; ++ph) { for (int pw = w_start; pw < w_end; ++pw) { const int out_offset = (b * params.out_height + ph) * params.out_width + pw; out_mat.col(out_offset) += in_mat.col(in_offset); out_count(out_offset) += T(1); } } } } } DCHECK_GT(out_count.minCoeff(), T(0)); out_mat.array().rowwise() /= out_count.transpose().array(); }; const int64 work_unit_size = params.tensor_in_rows * params.tensor_in_cols * params.depth; // NOTE: Constants in calculation below were estimated based on benchmarking. // Nanoseconds/work_unit for benchmarks ranged from 0.01 to 0.001, and // so the factor 0.01 (i.e. 1/100) with a max of 10000, was chosen to limit // the work unit cost to an operating range in which it empirically performed // best. const int64 work_unit_cost = std::max(int64{10000}, work_unit_size / 100); const DeviceBase::CpuWorkerThreads& worker_threads = *(context->device()->tensorflow_cpu_worker_threads()); Shard(worker_threads.num_threads, worker_threads.workers, params.tensor_in_batch, work_unit_cost, shard); } } // namespace tensorflow #endif // TENSORFLOW_CORE_KERNELS_POOLING_OPS_COMMON_H_