EVOLUTION-MANAGER
Edit File: concat_lib_cpu.h
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_CORE_KERNELS_CONCAT_LIB_CPU_H_ #define TENSORFLOW_CORE_KERNELS_CONCAT_LIB_CPU_H_ #define EIGEN_USE_THREADS #include <vector> #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/kernels/concat_lib.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { // ElementCopier must be a struct with a single Copy function, which is passed // the output pointer, input pointer, input index, and number of elements to // copy from input to output. template <typename T, typename ElementCopier> void ConcatCPUImpl( DeviceBase* d, const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>& inputs, int64 cost_per_unit, ElementCopier copier, typename TTypes<T, 2>::Matrix* output) { size_t num_inputs = inputs.size(); std::vector<ptrdiff_t> sizes; sizes.reserve(num_inputs); int64 row_size = 0; for (const auto& input : inputs) { sizes.push_back(input->dimension(1)); row_size += sizes.back(); } // cost_per_unit is estimated bytes to copy per output array element (for // strings this includes an estimate of the number of bytes of the actual // string data, as well). const int64 estimated_total_cost = output->size() * cost_per_unit; auto worker_threads = d->tensorflow_cpu_worker_threads(); int num_threads = std::min(4, worker_threads->num_threads); num_threads = static_cast<int>( std::min<int64>(num_threads, estimated_total_cost / 16384)); // Single threaded mode. // TODO(dga): Deduplicate this code w.r.t. sharded code below. if (num_threads == 0) { T* out = &(*output)(0, 0); std::vector<const T*> inp; inp.reserve(num_inputs); for (const auto& input : inputs) { inp.push_back(&(*input)(0, 0)); } const int64 dim0 = output->dimension(0); for (int64 i = 0; i < dim0; ++i) { for (int64 j = 0; j < num_inputs; ++j) { auto size = sizes[j]; copier.Copy(out, inp[j], j, size); out += size; inp[j] += size; } } return; } // Sharded mode. auto work = [&row_size, &sizes, &inputs, &output, &copier, &num_inputs]( int64 start, int64 end) { int64 skipped_rows = start / row_size; T* out = output->data() + skipped_rows * row_size; T* out_start = output->data() + start; T* out_end = output->data() + end; // Handle partial row at start if (out < out_start) { for (size_t j = 0; j < num_inputs; ++j) { ptrdiff_t size = sizes[j]; ptrdiff_t offset = out_start - out; if (size <= offset) { out += size; continue; } const T* inp = &(*inputs[j])(skipped_rows, 0); if (offset > 0) { out += offset; inp += offset; size -= offset; } size = std::min(size, out_end - out); if (size <= 0) break; copier.Copy(out, inp, j, size); out += size; } ++skipped_rows; } if (out == out_end) return; CHECK(out >= out_start); CHECK(out < out_end); // Copy remaining data. std::vector<const T*> inp; inp.reserve(num_inputs); for (const auto& input : inputs) { inp.push_back(&(*input)(skipped_rows, 0)); } const int64 dim0 = output->dimension(0); for (int64 i = skipped_rows; i < dim0; ++i) { for (int64 j = 0; j < num_inputs; ++j) { ptrdiff_t size = std::min(sizes[j], out_end - out); copier.Copy(out, inp[j], j, size); out += size; inp[j] += size; if (out == out_end) return; } } }; Shard(worker_threads->num_threads, worker_threads->workers, output->size(), cost_per_unit, work); } } // namespace tensorflow #endif // TENSORFLOW_CORE_KERNELS_CONCAT_LIB_CPU_H_