EVOLUTION-MANAGER
Edit File: functional_ops.h
// This file is MACHINE GENERATED! Do not edit. #ifndef TENSORFLOW_CC_OPS_FUNCTIONAL_OPS_H_ #define TENSORFLOW_CC_OPS_FUNCTIONAL_OPS_H_ // This file is MACHINE GENERATED! Do not edit. #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/gtl/array_slice.h" namespace tensorflow { namespace ops { /// @defgroup functional_ops Functional Ops /// @{ /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class Case { public: /// Optional attribute setters for Case struct Attrs { /// Defaults to [] TF_MUST_USE_RESULT Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { Attrs ret = *this; ret.output_shapes_ = x; return ret; } gtl::ArraySlice<PartialTensorShape> output_shapes_ = {}; }; Case(const ::tensorflow::Scope& scope, ::tensorflow::Input branch_index, ::tensorflow::InputList input, const DataTypeSlice& Tout, const gtl::ArraySlice<NameAttrList>& branches); Case(const ::tensorflow::Scope& scope, ::tensorflow::Input branch_index, ::tensorflow::InputList input, const DataTypeSlice& Tout, const gtl::ArraySlice<NameAttrList>& branches, const Case::Attrs& attrs); ::tensorflow::Output operator[](size_t index) const { return output[index]; } static Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { return Attrs().OutputShapes(x); } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `Output`: The index tensor. class DeviceIndex { public: DeviceIndex(const ::tensorflow::Scope& scope, const gtl::ArraySlice<::tensorflow::tstring>& device_names); operator ::tensorflow::Output() const { return index; } operator ::tensorflow::Input() const { return index; } ::tensorflow::Node* node() const { return index.node(); } Operation operation; ::tensorflow::Output index; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `Output`: The output tensor. class FakeParam { public: FakeParam(const ::tensorflow::Scope& scope, DataType dtype, PartialTensorShape shape); operator ::tensorflow::Output() const { return output; } operator ::tensorflow::Input() const { return output; } ::tensorflow::Node* node() const { return output.node(); } Operation operation; ::tensorflow::Output output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class For { public: For(const ::tensorflow::Scope& scope, ::tensorflow::Input start, ::tensorflow::Input limit, ::tensorflow::Input delta, ::tensorflow::InputList input, const NameAttrList& body); ::tensorflow::Output operator[](size_t index) const { return output[index]; } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class If { public: /// Optional attribute setters for If struct Attrs { /// Defaults to [] TF_MUST_USE_RESULT Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { Attrs ret = *this; ret.output_shapes_ = x; return ret; } gtl::ArraySlice<PartialTensorShape> output_shapes_ = {}; }; If(const ::tensorflow::Scope& scope, ::tensorflow::Input cond, ::tensorflow::InputList input, const DataTypeSlice& Tout, const NameAttrList& then_branch, const NameAttrList& else_branch); If(const ::tensorflow::Scope& scope, ::tensorflow::Input cond, ::tensorflow::InputList input, const DataTypeSlice& Tout, const NameAttrList& then_branch, const NameAttrList& else_branch, const If::Attrs& attrs); ::tensorflow::Output operator[](size_t index) const { return output[index]; } static Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { return Attrs().OutputShapes(x); } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class PartitionedCall { public: /// Optional attribute setters for PartitionedCall struct Attrs { /// Defaults to "" TF_MUST_USE_RESULT Attrs Config(StringPiece x) { Attrs ret = *this; ret.config_ = x; return ret; } /// Defaults to "" TF_MUST_USE_RESULT Attrs ConfigProto(StringPiece x) { Attrs ret = *this; ret.config_proto_ = x; return ret; } /// Defaults to "" TF_MUST_USE_RESULT Attrs ExecutorType(StringPiece x) { Attrs ret = *this; ret.executor_type_ = x; return ret; } StringPiece config_ = ""; StringPiece config_proto_ = ""; StringPiece executor_type_ = ""; }; PartitionedCall(const ::tensorflow::Scope& scope, ::tensorflow::InputList args, const DataTypeSlice& Tout, const NameAttrList& f); PartitionedCall(const ::tensorflow::Scope& scope, ::tensorflow::InputList args, const DataTypeSlice& Tout, const NameAttrList& f, const PartitionedCall::Attrs& attrs); ::tensorflow::Output operator[](size_t index) const { return output[index]; } static Attrs Config(StringPiece x) { return Attrs().Config(x); } static Attrs ConfigProto(StringPiece x) { return Attrs().ConfigProto(x); } static Attrs ExecutorType(StringPiece x) { return Attrs().ExecutorType(x); } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class RemoteCall { public: RemoteCall(const ::tensorflow::Scope& scope, ::tensorflow::Input target, ::tensorflow::InputList args, const DataTypeSlice& Tout, const NameAttrList& f); ::tensorflow::Output operator[](size_t index) const { return output[index]; } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class StatefulPartitionedCall { public: /// Optional attribute setters for StatefulPartitionedCall struct Attrs { /// Defaults to "" TF_MUST_USE_RESULT Attrs Config(StringPiece x) { Attrs ret = *this; ret.config_ = x; return ret; } /// Defaults to "" TF_MUST_USE_RESULT Attrs ConfigProto(StringPiece x) { Attrs ret = *this; ret.config_proto_ = x; return ret; } /// Defaults to "" TF_MUST_USE_RESULT Attrs ExecutorType(StringPiece x) { Attrs ret = *this; ret.executor_type_ = x; return ret; } StringPiece config_ = ""; StringPiece config_proto_ = ""; StringPiece executor_type_ = ""; }; StatefulPartitionedCall(const ::tensorflow::Scope& scope, ::tensorflow::InputList args, const DataTypeSlice& Tout, const NameAttrList& f); StatefulPartitionedCall(const ::tensorflow::Scope& scope, ::tensorflow::InputList args, const DataTypeSlice& Tout, const NameAttrList& f, const StatefulPartitionedCall::Attrs& attrs); ::tensorflow::Output operator[](size_t index) const { return output[index]; } static Attrs Config(StringPiece x) { return Attrs().Config(x); } static Attrs ConfigProto(StringPiece x) { return Attrs().ConfigProto(x); } static Attrs ExecutorType(StringPiece x) { return Attrs().ExecutorType(x); } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class StatelessCase { public: /// Optional attribute setters for StatelessCase struct Attrs { /// Defaults to [] TF_MUST_USE_RESULT Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { Attrs ret = *this; ret.output_shapes_ = x; return ret; } gtl::ArraySlice<PartialTensorShape> output_shapes_ = {}; }; StatelessCase(const ::tensorflow::Scope& scope, ::tensorflow::Input branch_index, ::tensorflow::InputList input, const DataTypeSlice& Tout, const gtl::ArraySlice<NameAttrList>& branches); StatelessCase(const ::tensorflow::Scope& scope, ::tensorflow::Input branch_index, ::tensorflow::InputList input, const DataTypeSlice& Tout, const gtl::ArraySlice<NameAttrList>& branches, const StatelessCase::Attrs& attrs); ::tensorflow::Output operator[](size_t index) const { return output[index]; } static Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { return Attrs().OutputShapes(x); } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class StatelessIf { public: /// Optional attribute setters for StatelessIf struct Attrs { /// Defaults to [] TF_MUST_USE_RESULT Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { Attrs ret = *this; ret.output_shapes_ = x; return ret; } gtl::ArraySlice<PartialTensorShape> output_shapes_ = {}; }; StatelessIf(const ::tensorflow::Scope& scope, ::tensorflow::Input cond, ::tensorflow::InputList input, const DataTypeSlice& Tout, const NameAttrList& then_branch, const NameAttrList& else_branch); StatelessIf(const ::tensorflow::Scope& scope, ::tensorflow::Input cond, ::tensorflow::InputList input, const DataTypeSlice& Tout, const NameAttrList& then_branch, const NameAttrList& else_branch, const StatelessIf::Attrs& attrs); ::tensorflow::Output operator[](size_t index) const { return output[index]; } static Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { return Attrs().OutputShapes(x); } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class StatelessWhile { public: /// Optional attribute setters for StatelessWhile struct Attrs { /// Defaults to [] TF_MUST_USE_RESULT Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { Attrs ret = *this; ret.output_shapes_ = x; return ret; } /// Defaults to 10 TF_MUST_USE_RESULT Attrs ParallelIterations(int64 x) { Attrs ret = *this; ret.parallel_iterations_ = x; return ret; } gtl::ArraySlice<PartialTensorShape> output_shapes_ = {}; int64 parallel_iterations_ = 10; }; StatelessWhile(const ::tensorflow::Scope& scope, ::tensorflow::InputList input, const NameAttrList& cond, const NameAttrList& body); StatelessWhile(const ::tensorflow::Scope& scope, ::tensorflow::InputList input, const NameAttrList& cond, const NameAttrList& body, const StatelessWhile::Attrs& attrs); ::tensorflow::Output operator[](size_t index) const { return output[index]; } static Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { return Attrs().OutputShapes(x); } static Attrs ParallelIterations(int64 x) { return Attrs().ParallelIterations(x); } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class SymbolicGradient { public: SymbolicGradient(const ::tensorflow::Scope& scope, ::tensorflow::InputList input, const DataTypeSlice& Tout, const NameAttrList& f); ::tensorflow::Output operator[](size_t index) const { return output[index]; } Operation operation; ::tensorflow::OutputList output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `Output`: The output tensor. class ToBool { public: ToBool(const ::tensorflow::Scope& scope, ::tensorflow::Input input); operator ::tensorflow::Output() const { return output; } operator ::tensorflow::Input() const { return output; } ::tensorflow::Node* node() const { return output.node(); } Operation operation; ::tensorflow::Output output; }; /// TODO: add doc. /// /// Arguments: /// * scope: A Scope object /// /// Returns: /// * `OutputList`: The output tensor. class While { public: /// Optional attribute setters for While struct Attrs { /// Defaults to [] TF_MUST_USE_RESULT Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { Attrs ret = *this; ret.output_shapes_ = x; return ret; } /// Defaults to 10 TF_MUST_USE_RESULT Attrs ParallelIterations(int64 x) { Attrs ret = *this; ret.parallel_iterations_ = x; return ret; } gtl::ArraySlice<PartialTensorShape> output_shapes_ = {}; int64 parallel_iterations_ = 10; }; While(const ::tensorflow::Scope& scope, ::tensorflow::InputList input, const NameAttrList& cond, const NameAttrList& body); While(const ::tensorflow::Scope& scope, ::tensorflow::InputList input, const NameAttrList& cond, const NameAttrList& body, const While::Attrs& attrs); ::tensorflow::Output operator[](size_t index) const { return output[index]; } static Attrs OutputShapes(const gtl::ArraySlice<PartialTensorShape>& x) { return Attrs().OutputShapes(x); } static Attrs ParallelIterations(int64 x) { return Attrs().ParallelIterations(x); } Operation operation; ::tensorflow::OutputList output; }; /// output = cond ? then_branch(input) : else_branch(input) /// /// Arguments: /// * scope: A Scope object /// * cond: A Tensor. If the tensor is a scalar of non-boolean type, the /// scalar is converted to a boolean according to the /// following rule: if the scalar is a numerical value, non-zero means /// True and zero means False; if the scalar is a string, non-empty /// means True and empty means False. If the tensor is not a scalar, /// being empty means False and being non-empty means True. /// * input: A list of input tensors. /// * then_branch: A function that takes 'inputs' and returns a list of /// tensors, whose types are the same as what else_branch returns. /// * else_branch: A function that takes 'inputs' and returns a list of /// tensors. whose types are the same as what then_branch returns. /// /// Returns: /// * `OutputList`: The output tensor. class _If { public: _If(const ::tensorflow::Scope& scope, ::tensorflow::Input cond, ::tensorflow::InputList input, const DataTypeSlice& Tout, const NameAttrList& then_branch, const NameAttrList& else_branch); ::tensorflow::Output operator[](size_t index) const { return output[index]; } Operation operation; ::tensorflow::OutputList output; }; /// output = input; While (Cond(output)) { output = Body(output) } /// /// Arguments: /// * scope: A Scope object /// * input: A list of input tensors whose types are T. /// * cond: A function takes 'input' and returns a tensor. If the tensor is /// a scalar of non-boolean, the scalar is converted to a boolean /// according to the following rule: if the scalar is a numerical /// value, non-zero means True and zero means False; if the scalar is /// a string, non-empty means True and empty means False. If the /// tensor is not a scalar, non-emptiness means True and False /// otherwise. /// * body: A function that takes a list of tensors and returns another /// list of tensors. Both lists have the same types as specified /// by T. /// /// Returns: /// * `OutputList`: A list of output tensors whose types are T. class _While { public: _While(const ::tensorflow::Scope& scope, ::tensorflow::InputList input, const NameAttrList& cond, const NameAttrList& body); ::tensorflow::Output operator[](size_t index) const { return output[index]; } Operation operation; ::tensorflow::OutputList output; }; /// @} } // namespace ops } // namespace tensorflow #endif // TENSORFLOW_CC_OPS_FUNCTIONAL_OPS_H_