EVOLUTION-MANAGER
Edit File: SparseSparseProductWithPruning.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H #define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H namespace Eigen { namespace internal { // perform a pseudo in-place sparse * sparse product assuming all matrices are col major template<typename Lhs, typename Rhs, typename ResultType> static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, const typename ResultType::RealScalar& tolerance) { // return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res); typedef typename remove_all<Rhs>::type::Scalar RhsScalar; typedef typename remove_all<ResultType>::type::Scalar ResScalar; typedef typename remove_all<Lhs>::type::StorageIndex StorageIndex; // make sure to call innerSize/outerSize since we fake the storage order. Index rows = lhs.innerSize(); Index cols = rhs.outerSize(); //Index size = lhs.outerSize(); eigen_assert(lhs.outerSize() == rhs.innerSize()); // allocate a temporary buffer AmbiVector<ResScalar,StorageIndex> tempVector(rows); // mimics a resizeByInnerOuter: if(ResultType::IsRowMajor) res.resize(cols, rows); else res.resize(rows, cols); evaluator<Lhs> lhsEval(lhs); evaluator<Rhs> rhsEval(rhs); // estimate the number of non zero entries // given a rhs column containing Y non zeros, we assume that the respective Y columns // of the lhs differs in average of one non zeros, thus the number of non zeros for // the product of a rhs column with the lhs is X+Y where X is the average number of non zero // per column of the lhs. // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate(); res.reserve(estimated_nnz_prod); double ratioColRes = double(estimated_nnz_prod)/(double(lhs.rows())*double(rhs.cols())); for (Index j=0; j<cols; ++j) { // FIXME: //double ratioColRes = (double(rhs.innerVector(j).nonZeros()) + double(lhs.nonZeros())/double(lhs.cols()))/double(lhs.rows()); // let's do a more accurate determination of the nnz ratio for the current column j of res tempVector.init(ratioColRes); tempVector.setZero(); for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) { // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index()) tempVector.restart(); RhsScalar x = rhsIt.value(); for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt) { tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x; } } res.startVec(j); for (typename AmbiVector<ResScalar,StorageIndex>::Iterator it(tempVector,tolerance); it; ++it) res.insertBackByOuterInner(j,it.index()) = it.value(); } res.finalize(); } template<typename Lhs, typename Rhs, typename ResultType, int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit, int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit, int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit> struct sparse_sparse_product_with_pruning_selector; template<typename Lhs, typename Rhs, typename ResultType> struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor> { typedef typename ResultType::RealScalar RealScalar; static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { typename remove_all<ResultType>::type _res(res.rows(), res.cols()); internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res, tolerance); res.swap(_res); } }; template<typename Lhs, typename Rhs, typename ResultType> struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor> { typedef typename ResultType::RealScalar RealScalar; static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { // we need a col-major matrix to hold the result typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> SparseTemporaryType; SparseTemporaryType _res(res.rows(), res.cols()); internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res, tolerance); res = _res; } }; template<typename Lhs, typename Rhs, typename ResultType> struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor> { typedef typename ResultType::RealScalar RealScalar; static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { // let's transpose the product to get a column x column product typename remove_all<ResultType>::type _res(res.rows(), res.cols()); internal::sparse_sparse_product_with_pruning_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res, tolerance); res.swap(_res); } }; template<typename Lhs, typename Rhs, typename ResultType> struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor> { typedef typename ResultType::RealScalar RealScalar; static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs; typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs; ColMajorMatrixLhs colLhs(lhs); ColMajorMatrixRhs colRhs(rhs); internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,ColMajorMatrixRhs,ResultType>(colLhs, colRhs, res, tolerance); // let's transpose the product to get a column x column product // typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType; // SparseTemporaryType _res(res.cols(), res.rows()); // sparse_sparse_product_with_pruning_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res); // res = _res.transpose(); } }; template<typename Lhs, typename Rhs, typename ResultType> struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor> { typedef typename ResultType::RealScalar RealScalar; static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixLhs; RowMajorMatrixLhs rowLhs(lhs); sparse_sparse_product_with_pruning_selector<RowMajorMatrixLhs,Rhs,ResultType,RowMajor,RowMajor>(rowLhs,rhs,res,tolerance); } }; template<typename Lhs, typename Rhs, typename ResultType> struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor> { typedef typename ResultType::RealScalar RealScalar; static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixRhs; RowMajorMatrixRhs rowRhs(rhs); sparse_sparse_product_with_pruning_selector<Lhs,RowMajorMatrixRhs,ResultType,RowMajor,RowMajor,RowMajor>(lhs,rowRhs,res,tolerance); } }; template<typename Lhs, typename Rhs, typename ResultType> struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor> { typedef typename ResultType::RealScalar RealScalar; static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs; ColMajorMatrixRhs colRhs(rhs); internal::sparse_sparse_product_with_pruning_impl<Lhs,ColMajorMatrixRhs,ResultType>(lhs, colRhs, res, tolerance); } }; template<typename Lhs, typename Rhs, typename ResultType> struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor> { typedef typename ResultType::RealScalar RealScalar; static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs; ColMajorMatrixLhs colLhs(lhs); internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,Rhs,ResultType>(colLhs, rhs, res, tolerance); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H