EVOLUTION-MANAGER
Edit File: SparsePermutation.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_PERMUTATION_H #define EIGEN_SPARSE_PERMUTATION_H // This file implements sparse * permutation products namespace Eigen { namespace internal { template<typename ExpressionType, int Side, bool Transposed> struct permutation_matrix_product<ExpressionType, Side, Transposed, SparseShape> { typedef typename nested_eval<ExpressionType, 1>::type MatrixType; typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; typedef typename MatrixTypeCleaned::Scalar Scalar; typedef typename MatrixTypeCleaned::StorageIndex StorageIndex; enum { SrcStorageOrder = MatrixTypeCleaned::Flags&RowMajorBit ? RowMajor : ColMajor, MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight }; typedef typename internal::conditional<MoveOuter, SparseMatrix<Scalar,SrcStorageOrder,StorageIndex>, SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,StorageIndex> >::type ReturnType; template<typename Dest,typename PermutationType> static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) { MatrixType mat(xpr); if(MoveOuter) { SparseMatrix<Scalar,SrcStorageOrder,StorageIndex> tmp(mat.rows(), mat.cols()); Matrix<StorageIndex,Dynamic,1> sizes(mat.outerSize()); for(Index j=0; j<mat.outerSize(); ++j) { Index jp = perm.indices().coeff(j); sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = StorageIndex(mat.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).nonZeros()); } tmp.reserve(sizes); for(Index j=0; j<mat.outerSize(); ++j) { Index jp = perm.indices().coeff(j); Index jsrc = ((Side==OnTheRight) ^ Transposed) ? jp : j; Index jdst = ((Side==OnTheLeft) ^ Transposed) ? jp : j; for(typename MatrixTypeCleaned::InnerIterator it(mat,jsrc); it; ++it) tmp.insertByOuterInner(jdst,it.index()) = it.value(); } dst = tmp; } else { SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,StorageIndex> tmp(mat.rows(), mat.cols()); Matrix<StorageIndex,Dynamic,1> sizes(tmp.outerSize()); sizes.setZero(); PermutationMatrix<Dynamic,Dynamic,StorageIndex> perm_cpy; if((Side==OnTheLeft) ^ Transposed) perm_cpy = perm; else perm_cpy = perm.transpose(); for(Index j=0; j<mat.outerSize(); ++j) for(typename MatrixTypeCleaned::InnerIterator it(mat,j); it; ++it) sizes[perm_cpy.indices().coeff(it.index())]++; tmp.reserve(sizes); for(Index j=0; j<mat.outerSize(); ++j) for(typename MatrixTypeCleaned::InnerIterator it(mat,j); it; ++it) tmp.insertByOuterInner(perm_cpy.indices().coeff(it.index()),j) = it.value(); dst = tmp; } } }; } namespace internal { template <int ProductTag> struct product_promote_storage_type<Sparse, PermutationStorage, ProductTag> { typedef Sparse ret; }; template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Sparse, ProductTag> { typedef Sparse ret; }; // TODO, the following two overloads are only needed to define the right temporary type through // typename traits<permutation_sparse_matrix_product<Rhs,Lhs,OnTheRight,false> >::ReturnType // whereas it should be correctly handled by traits<Product<> >::PlainObject template<typename Lhs, typename Rhs, int ProductTag> struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, PermutationShape, SparseShape> : public evaluator<typename permutation_matrix_product<Rhs,OnTheLeft,false,SparseShape>::ReturnType> { typedef Product<Lhs, Rhs, AliasFreeProduct> XprType; typedef typename permutation_matrix_product<Rhs,OnTheLeft,false,SparseShape>::ReturnType PlainObject; typedef evaluator<PlainObject> Base; enum { Flags = Base::Flags | EvalBeforeNestingBit }; explicit product_evaluator(const XprType& xpr) : m_result(xpr.rows(), xpr.cols()) { ::new (static_cast<Base*>(this)) Base(m_result); generic_product_impl<Lhs, Rhs, PermutationShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs()); } protected: PlainObject m_result; }; template<typename Lhs, typename Rhs, int ProductTag> struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, SparseShape, PermutationShape > : public evaluator<typename permutation_matrix_product<Lhs,OnTheRight,false,SparseShape>::ReturnType> { typedef Product<Lhs, Rhs, AliasFreeProduct> XprType; typedef typename permutation_matrix_product<Lhs,OnTheRight,false,SparseShape>::ReturnType PlainObject; typedef evaluator<PlainObject> Base; enum { Flags = Base::Flags | EvalBeforeNestingBit }; explicit product_evaluator(const XprType& xpr) : m_result(xpr.rows(), xpr.cols()) { ::new (static_cast<Base*>(this)) Base(m_result); generic_product_impl<Lhs, Rhs, SparseShape, PermutationShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs()); } protected: PlainObject m_result; }; } // end namespace internal /** \returns the matrix with the permutation applied to the columns */ template<typename SparseDerived, typename PermDerived> inline const Product<SparseDerived, PermDerived, AliasFreeProduct> operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm) { return Product<SparseDerived, PermDerived, AliasFreeProduct>(matrix.derived(), perm.derived()); } /** \returns the matrix with the permutation applied to the rows */ template<typename SparseDerived, typename PermDerived> inline const Product<PermDerived, SparseDerived, AliasFreeProduct> operator*( const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix) { return Product<PermDerived, SparseDerived, AliasFreeProduct>(perm.derived(), matrix.derived()); } /** \returns the matrix with the inverse permutation applied to the columns. */ template<typename SparseDerived, typename PermutationType> inline const Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct> operator*(const SparseMatrixBase<SparseDerived>& matrix, const InverseImpl<PermutationType, PermutationStorage>& tperm) { return Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>(matrix.derived(), tperm.derived()); } /** \returns the matrix with the inverse permutation applied to the rows. */ template<typename SparseDerived, typename PermutationType> inline const Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct> operator*(const InverseImpl<PermutationType,PermutationStorage>& tperm, const SparseMatrixBase<SparseDerived>& matrix) { return Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>(tperm.derived(), matrix.derived()); } } // end namespace Eigen #endif // EIGEN_SPARSE_SELFADJOINTVIEW_H