EVOLUTION-MANAGER
Edit File: SparseDenseProduct.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEDENSEPRODUCT_H #define EIGEN_SPARSEDENSEPRODUCT_H namespace Eigen { namespace internal { template <> struct product_promote_storage_type<Sparse,Dense, OuterProduct> { typedef Sparse ret; }; template <> struct product_promote_storage_type<Dense,Sparse, OuterProduct> { typedef Sparse ret; }; template<typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType, int LhsStorageOrder = ((SparseLhsType::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor, bool ColPerCol = ((DenseRhsType::Flags&RowMajorBit)==0) || DenseRhsType::ColsAtCompileTime==1> struct sparse_time_dense_product_impl; template<typename SparseLhsType, typename DenseRhsType, typename DenseResType> struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, true> { typedef typename internal::remove_all<SparseLhsType>::type Lhs; typedef typename internal::remove_all<DenseRhsType>::type Rhs; typedef typename internal::remove_all<DenseResType>::type Res; typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator; typedef evaluator<Lhs> LhsEval; static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) { LhsEval lhsEval(lhs); Index n = lhs.outerSize(); #ifdef EIGEN_HAS_OPENMP Eigen::initParallel(); Index threads = Eigen::nbThreads(); #endif for(Index c=0; c<rhs.cols(); ++c) { #ifdef EIGEN_HAS_OPENMP // This 20000 threshold has been found experimentally on 2D and 3D Poisson problems. // It basically represents the minimal amount of work to be done to be worth it. if(threads>1 && lhsEval.nonZerosEstimate() > 20000) { #pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads) for(Index i=0; i<n; ++i) processRow(lhsEval,rhs,res,alpha,i,c); } else #endif { for(Index i=0; i<n; ++i) processRow(lhsEval,rhs,res,alpha,i,c); } } } static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha, Index i, Index col) { typename Res::Scalar tmp(0); for(LhsInnerIterator it(lhsEval,i); it ;++it) tmp += it.value() * rhs.coeff(it.index(),col); res.coeffRef(i,col) += alpha * tmp; } }; // FIXME: what is the purpose of the following specialization? Is it for the BlockedSparse format? // -> let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators // template<typename T1, typename T2/*, int _Options, typename _StrideType*/> // struct ScalarBinaryOpTraits<T1, Ref<T2/*, _Options, _StrideType*/> > // { // enum { // Defined = 1 // }; // typedef typename CwiseUnaryOp<scalar_multiple2_op<T1, typename T2::Scalar>, T2>::PlainObject ReturnType; // }; template<typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType> struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType, ColMajor, true> { typedef typename internal::remove_all<SparseLhsType>::type Lhs; typedef typename internal::remove_all<DenseRhsType>::type Rhs; typedef typename internal::remove_all<DenseResType>::type Res; typedef evaluator<Lhs> LhsEval; typedef typename LhsEval::InnerIterator LhsInnerIterator; static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) { LhsEval lhsEval(lhs); for(Index c=0; c<rhs.cols(); ++c) { for(Index j=0; j<lhs.outerSize(); ++j) { // typename Res::Scalar rhs_j = alpha * rhs.coeff(j,c); typename ScalarBinaryOpTraits<AlphaType, typename Rhs::Scalar>::ReturnType rhs_j(alpha * rhs.coeff(j,c)); for(LhsInnerIterator it(lhsEval,j); it ;++it) res.coeffRef(it.index(),c) += it.value() * rhs_j; } } } }; template<typename SparseLhsType, typename DenseRhsType, typename DenseResType> struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, false> { typedef typename internal::remove_all<SparseLhsType>::type Lhs; typedef typename internal::remove_all<DenseRhsType>::type Rhs; typedef typename internal::remove_all<DenseResType>::type Res; typedef evaluator<Lhs> LhsEval; typedef typename LhsEval::InnerIterator LhsInnerIterator; static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) { Index n = lhs.rows(); LhsEval lhsEval(lhs); #ifdef EIGEN_HAS_OPENMP Eigen::initParallel(); Index threads = Eigen::nbThreads(); // This 20000 threshold has been found experimentally on 2D and 3D Poisson problems. // It basically represents the minimal amount of work to be done to be worth it. if(threads>1 && lhsEval.nonZerosEstimate()*rhs.cols() > 20000) { #pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads) for(Index i=0; i<n; ++i) processRow(lhsEval,rhs,res,alpha,i); } else #endif { for(Index i=0; i<n; ++i) processRow(lhsEval, rhs, res, alpha, i); } } static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, Res& res, const typename Res::Scalar& alpha, Index i) { typename Res::RowXpr res_i(res.row(i)); for(LhsInnerIterator it(lhsEval,i); it ;++it) res_i += (alpha*it.value()) * rhs.row(it.index()); } }; template<typename SparseLhsType, typename DenseRhsType, typename DenseResType> struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, ColMajor, false> { typedef typename internal::remove_all<SparseLhsType>::type Lhs; typedef typename internal::remove_all<DenseRhsType>::type Rhs; typedef typename internal::remove_all<DenseResType>::type Res; typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator; static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) { evaluator<Lhs> lhsEval(lhs); for(Index j=0; j<lhs.outerSize(); ++j) { typename Rhs::ConstRowXpr rhs_j(rhs.row(j)); for(LhsInnerIterator it(lhsEval,j); it ;++it) res.row(it.index()) += (alpha*it.value()) * rhs_j; } } }; template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,typename AlphaType> inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) { sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType>::run(lhs, rhs, res, alpha); } } // end namespace internal namespace internal { template<typename Lhs, typename Rhs, int ProductType> struct generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType> : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SparseShape,DenseShape,ProductType> > { typedef typename Product<Lhs,Rhs>::Scalar Scalar; template<typename Dest> static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? 1 : Rhs::ColsAtCompileTime>::type LhsNested; typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==0) ? 1 : Dynamic>::type RhsNested; LhsNested lhsNested(lhs); RhsNested rhsNested(rhs); internal::sparse_time_dense_product(lhsNested, rhsNested, dst, alpha); } }; template<typename Lhs, typename Rhs, int ProductType> struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, DenseShape, ProductType> : generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType> {}; template<typename Lhs, typename Rhs, int ProductType> struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType> : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SparseShape,ProductType> > { typedef typename Product<Lhs,Rhs>::Scalar Scalar; template<typename Dst> static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? Dynamic : 1>::type LhsNested; typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==RowMajorBit) ? 1 : Lhs::RowsAtCompileTime>::type RhsNested; LhsNested lhsNested(lhs); RhsNested rhsNested(rhs); // transpose everything Transpose<Dst> dstT(dst); internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); } }; template<typename Lhs, typename Rhs, int ProductType> struct generic_product_impl<Lhs, Rhs, DenseShape, SparseTriangularShape, ProductType> : generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType> {}; template<typename LhsT, typename RhsT, bool NeedToTranspose> struct sparse_dense_outer_product_evaluator { protected: typedef typename conditional<NeedToTranspose,RhsT,LhsT>::type Lhs1; typedef typename conditional<NeedToTranspose,LhsT,RhsT>::type ActualRhs; typedef Product<LhsT,RhsT,DefaultProduct> ProdXprType; // if the actual left-hand side is a dense vector, // then build a sparse-view so that we can seamlessly iterate over it. typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value, Lhs1, SparseView<Lhs1> >::type ActualLhs; typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value, Lhs1 const&, SparseView<Lhs1> >::type LhsArg; typedef evaluator<ActualLhs> LhsEval; typedef evaluator<ActualRhs> RhsEval; typedef typename evaluator<ActualLhs>::InnerIterator LhsIterator; typedef typename ProdXprType::Scalar Scalar; public: enum { Flags = NeedToTranspose ? RowMajorBit : 0, CoeffReadCost = HugeCost }; class InnerIterator : public LhsIterator { public: InnerIterator(const sparse_dense_outer_product_evaluator &xprEval, Index outer) : LhsIterator(xprEval.m_lhsXprImpl, 0), m_outer(outer), m_empty(false), m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits<ActualRhs>::StorageKind() )) {} EIGEN_STRONG_INLINE Index outer() const { return m_outer; } EIGEN_STRONG_INLINE Index row() const { return NeedToTranspose ? m_outer : LhsIterator::index(); } EIGEN_STRONG_INLINE Index col() const { return NeedToTranspose ? LhsIterator::index() : m_outer; } EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; } EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); } protected: Scalar get(const RhsEval &rhs, Index outer, Dense = Dense()) const { return rhs.coeff(outer); } Scalar get(const RhsEval &rhs, Index outer, Sparse = Sparse()) { typename RhsEval::InnerIterator it(rhs, outer); if (it && it.index()==0 && it.value()!=Scalar(0)) return it.value(); m_empty = true; return Scalar(0); } Index m_outer; bool m_empty; Scalar m_factor; }; sparse_dense_outer_product_evaluator(const Lhs1 &lhs, const ActualRhs &rhs) : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs) { EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } // transpose case sparse_dense_outer_product_evaluator(const ActualRhs &rhs, const Lhs1 &lhs) : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs) { EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } protected: const LhsArg m_lhs; evaluator<ActualLhs> m_lhsXprImpl; evaluator<ActualRhs> m_rhsXprImpl; }; // sparse * dense outer product template<typename Lhs, typename Rhs> struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, SparseShape, DenseShape> : sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor> { typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor> Base; typedef Product<Lhs, Rhs> XprType; typedef typename XprType::PlainObject PlainObject; explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs()) {} }; template<typename Lhs, typename Rhs> struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, DenseShape, SparseShape> : sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor> { typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor> Base; typedef Product<Lhs, Rhs> XprType; typedef typename XprType::PlainObject PlainObject; explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs()) {} }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_SPARSEDENSEPRODUCT_H