EVOLUTION-MANAGER
Edit File: SparseAssign.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEASSIGN_H #define EIGEN_SPARSEASSIGN_H namespace Eigen { template<typename Derived> template<typename OtherDerived> Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other) { internal::call_assignment_no_alias(derived(), other.derived()); return derived(); } template<typename Derived> template<typename OtherDerived> Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other) { // TODO use the evaluator mechanism other.evalTo(derived()); return derived(); } template<typename Derived> template<typename OtherDerived> inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other) { // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine internal::Assignment<Derived,OtherDerived,internal::assign_op<Scalar,typename OtherDerived::Scalar> > ::run(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>()); return derived(); } template<typename Derived> inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other) { internal::call_assignment_no_alias(derived(), other.derived()); return derived(); } namespace internal { template<> struct storage_kind_to_evaluator_kind<Sparse> { typedef IteratorBased Kind; }; template<> struct storage_kind_to_shape<Sparse> { typedef SparseShape Shape; }; struct Sparse2Sparse {}; struct Sparse2Dense {}; template<> struct AssignmentKind<SparseShape, SparseShape> { typedef Sparse2Sparse Kind; }; template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; }; template<> struct AssignmentKind<DenseShape, SparseShape> { typedef Sparse2Dense Kind; }; template<> struct AssignmentKind<DenseShape, SparseTriangularShape> { typedef Sparse2Dense Kind; }; template<typename DstXprType, typename SrcXprType> void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src) { typedef typename DstXprType::Scalar Scalar; typedef internal::evaluator<DstXprType> DstEvaluatorType; typedef internal::evaluator<SrcXprType> SrcEvaluatorType; SrcEvaluatorType srcEvaluator(src); const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit); const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols(); if ((!transpose) && src.isRValue()) { // eval without temporary dst.resize(src.rows(), src.cols()); dst.setZero(); dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); for (Index j=0; j<outerEvaluationSize; ++j) { dst.startVec(j); for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) { Scalar v = it.value(); dst.insertBackByOuterInner(j,it.index()) = v; } } dst.finalize(); } else { // eval through a temporary eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) || (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) && "the transpose operation is supposed to be handled in SparseMatrix::operator="); enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) }; DstXprType temp(src.rows(), src.cols()); temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); for (Index j=0; j<outerEvaluationSize; ++j) { temp.startVec(j); for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) { Scalar v = it.value(); temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v; } } temp.finalize(); dst = temp.markAsRValue(); } } // Generic Sparse to Sparse assignment template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse> { static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) { assign_sparse_to_sparse(dst.derived(), src.derived()); } }; // Generic Sparse to Dense assignment template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Weak> { static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { if(internal::is_same<Functor,internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> >::value) dst.setZero(); internal::evaluator<SrcXprType> srcEval(src); resize_if_allowed(dst, src, func); internal::evaluator<DstXprType> dstEval(dst); const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols(); for (Index j=0; j<outerEvaluationSize; ++j) for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i) func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value()); } }; // Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense template<typename DstXprType, typename Func1, typename Func2> struct assignment_from_dense_op_sparse { template<typename SrcXprType, typename InitialFunc> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) { #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN #endif call_assignment_no_alias(dst, src.lhs(), Func1()); call_assignment_no_alias(dst, src.rhs(), Func2()); } // Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse; template<typename Lhs, typename Rhs, typename Scalar> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_sum_op<Scalar,Scalar>, const Lhs, const Rhs> &src, const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/) { #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN #endif // Apply the dense matrix first, then the sparse one. call_assignment_no_alias(dst, src.rhs(), Func1()); call_assignment_no_alias(dst, src.lhs(), Func2()); } // Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse; template<typename Lhs, typename Rhs, typename Scalar> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_difference_op<Scalar,Scalar>, const Lhs, const Rhs> &src, const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/) { #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN #endif // Apply the dense matrix first, then the sparse one. call_assignment_no_alias(dst, -src.rhs(), Func1()); call_assignment_no_alias(dst, src.lhs(), add_assign_op<typename DstXprType::Scalar,typename Lhs::Scalar>()); } }; #define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP,BINOP,ASSIGN_OP2) \ template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> \ struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<Scalar,Scalar>, const Lhs, const Rhs>, internal::ASSIGN_OP<typename DstXprType::Scalar,Scalar>, \ Sparse2Dense, \ typename internal::enable_if< internal::is_same<typename internal::evaluator_traits<Lhs>::Shape,DenseShape>::value \ || internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type> \ : assignment_from_dense_op_sparse<DstXprType, internal::ASSIGN_OP<typename DstXprType::Scalar,typename Lhs::Scalar>, internal::ASSIGN_OP2<typename DstXprType::Scalar,typename Rhs::Scalar> > \ {} EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_sum_op,add_assign_op); EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_sum_op,add_assign_op); EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_sum_op,sub_assign_op); EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_difference_op,sub_assign_op); EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_difference_op,sub_assign_op); EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_difference_op,add_assign_op); // Specialization for "dst = dec.solve(rhs)" // NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error template<typename DstXprType, typename DecType, typename RhsType, typename Scalar> struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar,Scalar>, Sparse2Sparse> { typedef Solve<DecType,RhsType> SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &) { Index dstRows = src.rows(); Index dstCols = src.cols(); if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) dst.resize(dstRows, dstCols); src.dec()._solve_impl(src.rhs(), dst); } }; struct Diagonal2Sparse {}; template<> struct AssignmentKind<SparseShape,DiagonalShape> { typedef Diagonal2Sparse Kind; }; template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse> { typedef typename DstXprType::StorageIndex StorageIndex; typedef typename DstXprType::Scalar Scalar; template<int Options, typename AssignFunc> static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func) { dst.assignDiagonal(src.diagonal(), func); } template<typename DstDerived> static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) { dst.derived().diagonal() = src.diagonal(); } template<typename DstDerived> static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) { dst.derived().diagonal() += src.diagonal(); } template<typename DstDerived> static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) { dst.derived().diagonal() -= src.diagonal(); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_SPARSEASSIGN_H