EVOLUTION-MANAGER
Edit File: StlIterators.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2018 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. namespace Eigen { namespace internal { template<typename IteratorType> struct indexed_based_stl_iterator_traits; template<typename Derived> class indexed_based_stl_iterator_base { protected: typedef indexed_based_stl_iterator_traits<Derived> traits; typedef typename traits::XprType XprType; typedef indexed_based_stl_iterator_base<typename traits::non_const_iterator> non_const_iterator; typedef indexed_based_stl_iterator_base<typename traits::const_iterator> const_iterator; typedef typename internal::conditional<internal::is_const<XprType>::value,non_const_iterator,const_iterator>::type other_iterator; // NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class: friend class indexed_based_stl_iterator_base<typename traits::const_iterator>; friend class indexed_based_stl_iterator_base<typename traits::non_const_iterator>; public: typedef Index difference_type; typedef std::random_access_iterator_tag iterator_category; indexed_based_stl_iterator_base() : mp_xpr(0), m_index(0) {} indexed_based_stl_iterator_base(XprType& xpr, Index index) : mp_xpr(&xpr), m_index(index) {} indexed_based_stl_iterator_base(const non_const_iterator& other) : mp_xpr(other.mp_xpr), m_index(other.m_index) {} indexed_based_stl_iterator_base& operator=(const non_const_iterator& other) { mp_xpr = other.mp_xpr; m_index = other.m_index; return *this; } Derived& operator++() { ++m_index; return derived(); } Derived& operator--() { --m_index; return derived(); } Derived operator++(int) { Derived prev(derived()); operator++(); return prev;} Derived operator--(int) { Derived prev(derived()); operator--(); return prev;} friend Derived operator+(const indexed_based_stl_iterator_base& a, Index b) { Derived ret(a.derived()); ret += b; return ret; } friend Derived operator-(const indexed_based_stl_iterator_base& a, Index b) { Derived ret(a.derived()); ret -= b; return ret; } friend Derived operator+(Index a, const indexed_based_stl_iterator_base& b) { Derived ret(b.derived()); ret += a; return ret; } friend Derived operator-(Index a, const indexed_based_stl_iterator_base& b) { Derived ret(b.derived()); ret -= a; return ret; } Derived& operator+=(Index b) { m_index += b; return derived(); } Derived& operator-=(Index b) { m_index -= b; return derived(); } difference_type operator-(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index - other.m_index; } difference_type operator-(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index - other.m_index; } bool operator==(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; } bool operator!=(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; } bool operator< (const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; } bool operator<=(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; } bool operator> (const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; } bool operator>=(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; } bool operator==(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; } bool operator!=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; } bool operator< (const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; } bool operator<=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; } bool operator> (const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; } bool operator>=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; } protected: Derived& derived() { return static_cast<Derived&>(*this); } const Derived& derived() const { return static_cast<const Derived&>(*this); } XprType *mp_xpr; Index m_index; }; template<typename Derived> class indexed_based_stl_reverse_iterator_base { protected: typedef indexed_based_stl_iterator_traits<Derived> traits; typedef typename traits::XprType XprType; typedef indexed_based_stl_reverse_iterator_base<typename traits::non_const_iterator> non_const_iterator; typedef indexed_based_stl_reverse_iterator_base<typename traits::const_iterator> const_iterator; typedef typename internal::conditional<internal::is_const<XprType>::value,non_const_iterator,const_iterator>::type other_iterator; // NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class: friend class indexed_based_stl_reverse_iterator_base<typename traits::const_iterator>; friend class indexed_based_stl_reverse_iterator_base<typename traits::non_const_iterator>; public: typedef Index difference_type; typedef std::random_access_iterator_tag iterator_category; indexed_based_stl_reverse_iterator_base() : mp_xpr(0), m_index(0) {} indexed_based_stl_reverse_iterator_base(XprType& xpr, Index index) : mp_xpr(&xpr), m_index(index) {} indexed_based_stl_reverse_iterator_base(const non_const_iterator& other) : mp_xpr(other.mp_xpr), m_index(other.m_index) {} indexed_based_stl_reverse_iterator_base& operator=(const non_const_iterator& other) { mp_xpr = other.mp_xpr; m_index = other.m_index; return *this; } Derived& operator++() { --m_index; return derived(); } Derived& operator--() { ++m_index; return derived(); } Derived operator++(int) { Derived prev(derived()); operator++(); return prev;} Derived operator--(int) { Derived prev(derived()); operator--(); return prev;} friend Derived operator+(const indexed_based_stl_reverse_iterator_base& a, Index b) { Derived ret(a.derived()); ret += b; return ret; } friend Derived operator-(const indexed_based_stl_reverse_iterator_base& a, Index b) { Derived ret(a.derived()); ret -= b; return ret; } friend Derived operator+(Index a, const indexed_based_stl_reverse_iterator_base& b) { Derived ret(b.derived()); ret += a; return ret; } friend Derived operator-(Index a, const indexed_based_stl_reverse_iterator_base& b) { Derived ret(b.derived()); ret -= a; return ret; } Derived& operator+=(Index b) { m_index -= b; return derived(); } Derived& operator-=(Index b) { m_index += b; return derived(); } difference_type operator-(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return other.m_index - m_index; } difference_type operator-(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return other.m_index - m_index; } bool operator==(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; } bool operator!=(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; } bool operator< (const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; } bool operator<=(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; } bool operator> (const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; } bool operator>=(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; } bool operator==(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; } bool operator!=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; } bool operator< (const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; } bool operator<=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; } bool operator> (const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; } bool operator>=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; } protected: Derived& derived() { return static_cast<Derived&>(*this); } const Derived& derived() const { return static_cast<const Derived&>(*this); } XprType *mp_xpr; Index m_index; }; template<typename XprType> class pointer_based_stl_iterator { enum { is_lvalue = internal::is_lvalue<XprType>::value }; typedef pointer_based_stl_iterator<typename internal::remove_const<XprType>::type> non_const_iterator; typedef pointer_based_stl_iterator<typename internal::add_const<XprType>::type> const_iterator; typedef typename internal::conditional<internal::is_const<XprType>::value,non_const_iterator,const_iterator>::type other_iterator; // NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class: friend class pointer_based_stl_iterator<typename internal::add_const<XprType>::type>; friend class pointer_based_stl_iterator<typename internal::remove_const<XprType>::type>; public: typedef Index difference_type; typedef typename XprType::Scalar value_type; typedef std::random_access_iterator_tag iterator_category; typedef typename internal::conditional<bool(is_lvalue), value_type*, const value_type*>::type pointer; typedef typename internal::conditional<bool(is_lvalue), value_type&, const value_type&>::type reference; pointer_based_stl_iterator() : m_ptr(0) {} pointer_based_stl_iterator(XprType& xpr, Index index) : m_incr(xpr.innerStride()) { m_ptr = xpr.data() + index * m_incr.value(); } pointer_based_stl_iterator(const non_const_iterator& other) : m_ptr(other.m_ptr), m_incr(other.m_incr) {} pointer_based_stl_iterator& operator=(const non_const_iterator& other) { m_ptr = other.m_ptr; m_incr.setValue(other.m_incr); return *this; } reference operator*() const { return *m_ptr; } reference operator[](Index i) const { return *(m_ptr+i*m_incr.value()); } pointer operator->() const { return m_ptr; } pointer_based_stl_iterator& operator++() { m_ptr += m_incr.value(); return *this; } pointer_based_stl_iterator& operator--() { m_ptr -= m_incr.value(); return *this; } pointer_based_stl_iterator operator++(int) { pointer_based_stl_iterator prev(*this); operator++(); return prev;} pointer_based_stl_iterator operator--(int) { pointer_based_stl_iterator prev(*this); operator--(); return prev;} friend pointer_based_stl_iterator operator+(const pointer_based_stl_iterator& a, Index b) { pointer_based_stl_iterator ret(a); ret += b; return ret; } friend pointer_based_stl_iterator operator-(const pointer_based_stl_iterator& a, Index b) { pointer_based_stl_iterator ret(a); ret -= b; return ret; } friend pointer_based_stl_iterator operator+(Index a, const pointer_based_stl_iterator& b) { pointer_based_stl_iterator ret(b); ret += a; return ret; } friend pointer_based_stl_iterator operator-(Index a, const pointer_based_stl_iterator& b) { pointer_based_stl_iterator ret(b); ret -= a; return ret; } pointer_based_stl_iterator& operator+=(Index b) { m_ptr += b*m_incr.value(); return *this; } pointer_based_stl_iterator& operator-=(Index b) { m_ptr -= b*m_incr.value(); return *this; } difference_type operator-(const pointer_based_stl_iterator& other) const { return (m_ptr - other.m_ptr)/m_incr.value(); } difference_type operator-(const other_iterator& other) const { return (m_ptr - other.m_ptr)/m_incr.value(); } bool operator==(const pointer_based_stl_iterator& other) const { return m_ptr == other.m_ptr; } bool operator!=(const pointer_based_stl_iterator& other) const { return m_ptr != other.m_ptr; } bool operator< (const pointer_based_stl_iterator& other) const { return m_ptr < other.m_ptr; } bool operator<=(const pointer_based_stl_iterator& other) const { return m_ptr <= other.m_ptr; } bool operator> (const pointer_based_stl_iterator& other) const { return m_ptr > other.m_ptr; } bool operator>=(const pointer_based_stl_iterator& other) const { return m_ptr >= other.m_ptr; } bool operator==(const other_iterator& other) const { return m_ptr == other.m_ptr; } bool operator!=(const other_iterator& other) const { return m_ptr != other.m_ptr; } bool operator< (const other_iterator& other) const { return m_ptr < other.m_ptr; } bool operator<=(const other_iterator& other) const { return m_ptr <= other.m_ptr; } bool operator> (const other_iterator& other) const { return m_ptr > other.m_ptr; } bool operator>=(const other_iterator& other) const { return m_ptr >= other.m_ptr; } protected: pointer m_ptr; internal::variable_if_dynamic<Index, XprType::InnerStrideAtCompileTime> m_incr; }; template<typename _XprType> struct indexed_based_stl_iterator_traits<generic_randaccess_stl_iterator<_XprType> > { typedef _XprType XprType; typedef generic_randaccess_stl_iterator<typename internal::remove_const<XprType>::type> non_const_iterator; typedef generic_randaccess_stl_iterator<typename internal::add_const<XprType>::type> const_iterator; }; template<typename XprType> class generic_randaccess_stl_iterator : public indexed_based_stl_iterator_base<generic_randaccess_stl_iterator<XprType> > { public: typedef typename XprType::Scalar value_type; protected: enum { has_direct_access = (internal::traits<XprType>::Flags & DirectAccessBit) ? 1 : 0, is_lvalue = internal::is_lvalue<XprType>::value }; typedef indexed_based_stl_iterator_base<generic_randaccess_stl_iterator> Base; using Base::m_index; using Base::mp_xpr; // TODO currently const Transpose/Reshape expressions never returns const references, // so lets return by value too. //typedef typename internal::conditional<bool(has_direct_access), const value_type&, const value_type>::type read_only_ref_t; typedef const value_type read_only_ref_t; public: typedef typename internal::conditional<bool(is_lvalue), value_type *, const value_type *>::type pointer; typedef typename internal::conditional<bool(is_lvalue), value_type&, read_only_ref_t>::type reference; generic_randaccess_stl_iterator() : Base() {} generic_randaccess_stl_iterator(XprType& xpr, Index index) : Base(xpr,index) {} generic_randaccess_stl_iterator(const typename Base::non_const_iterator& other) : Base(other) {} using Base::operator=; reference operator*() const { return (*mp_xpr)(m_index); } reference operator[](Index i) const { return (*mp_xpr)(m_index+i); } pointer operator->() const { return &((*mp_xpr)(m_index)); } }; template<typename _XprType, DirectionType Direction> struct indexed_based_stl_iterator_traits<subvector_stl_iterator<_XprType,Direction> > { typedef _XprType XprType; typedef subvector_stl_iterator<typename internal::remove_const<XprType>::type, Direction> non_const_iterator; typedef subvector_stl_iterator<typename internal::add_const<XprType>::type, Direction> const_iterator; }; template<typename XprType, DirectionType Direction> class subvector_stl_iterator : public indexed_based_stl_iterator_base<subvector_stl_iterator<XprType,Direction> > { protected: enum { is_lvalue = internal::is_lvalue<XprType>::value }; typedef indexed_based_stl_iterator_base<subvector_stl_iterator> Base; using Base::m_index; using Base::mp_xpr; typedef typename internal::conditional<Direction==Vertical,typename XprType::ColXpr,typename XprType::RowXpr>::type SubVectorType; typedef typename internal::conditional<Direction==Vertical,typename XprType::ConstColXpr,typename XprType::ConstRowXpr>::type ConstSubVectorType; public: typedef typename internal::conditional<bool(is_lvalue), SubVectorType, ConstSubVectorType>::type reference; typedef typename reference::PlainObject value_type; private: class subvector_stl_iterator_ptr { public: subvector_stl_iterator_ptr(const reference &subvector) : m_subvector(subvector) {} reference* operator->() { return &m_subvector; } private: reference m_subvector; }; public: typedef subvector_stl_iterator_ptr pointer; subvector_stl_iterator() : Base() {} subvector_stl_iterator(XprType& xpr, Index index) : Base(xpr,index) {} reference operator*() const { return (*mp_xpr).template subVector<Direction>(m_index); } reference operator[](Index i) const { return (*mp_xpr).template subVector<Direction>(m_index+i); } pointer operator->() const { return (*mp_xpr).template subVector<Direction>(m_index); } }; template<typename _XprType, DirectionType Direction> struct indexed_based_stl_iterator_traits<subvector_stl_reverse_iterator<_XprType,Direction> > { typedef _XprType XprType; typedef subvector_stl_reverse_iterator<typename internal::remove_const<XprType>::type, Direction> non_const_iterator; typedef subvector_stl_reverse_iterator<typename internal::add_const<XprType>::type, Direction> const_iterator; }; template<typename XprType, DirectionType Direction> class subvector_stl_reverse_iterator : public indexed_based_stl_reverse_iterator_base<subvector_stl_reverse_iterator<XprType,Direction> > { protected: enum { is_lvalue = internal::is_lvalue<XprType>::value }; typedef indexed_based_stl_reverse_iterator_base<subvector_stl_reverse_iterator> Base; using Base::m_index; using Base::mp_xpr; typedef typename internal::conditional<Direction==Vertical,typename XprType::ColXpr,typename XprType::RowXpr>::type SubVectorType; typedef typename internal::conditional<Direction==Vertical,typename XprType::ConstColXpr,typename XprType::ConstRowXpr>::type ConstSubVectorType; public: typedef typename internal::conditional<bool(is_lvalue), SubVectorType, ConstSubVectorType>::type reference; typedef typename reference::PlainObject value_type; private: class subvector_stl_reverse_iterator_ptr { public: subvector_stl_reverse_iterator_ptr(const reference &subvector) : m_subvector(subvector) {} reference* operator->() { return &m_subvector; } private: reference m_subvector; }; public: typedef subvector_stl_reverse_iterator_ptr pointer; subvector_stl_reverse_iterator() : Base() {} subvector_stl_reverse_iterator(XprType& xpr, Index index) : Base(xpr,index) {} reference operator*() const { return (*mp_xpr).template subVector<Direction>(m_index); } reference operator[](Index i) const { return (*mp_xpr).template subVector<Direction>(m_index+i); } pointer operator->() const { return (*mp_xpr).template subVector<Direction>(m_index); } }; } // namespace internal /** returns an iterator to the first element of the 1D vector or array * \only_for_vectors * \sa end(), cbegin() */ template<typename Derived> inline typename DenseBase<Derived>::iterator DenseBase<Derived>::begin() { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return iterator(derived(), 0); } /** const version of begin() */ template<typename Derived> inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::begin() const { return cbegin(); } /** returns a read-only const_iterator to the first element of the 1D vector or array * \only_for_vectors * \sa cend(), begin() */ template<typename Derived> inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::cbegin() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return const_iterator(derived(), 0); } /** returns an iterator to the element following the last element of the 1D vector or array * \only_for_vectors * \sa begin(), cend() */ template<typename Derived> inline typename DenseBase<Derived>::iterator DenseBase<Derived>::end() { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return iterator(derived(), size()); } /** const version of end() */ template<typename Derived> inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::end() const { return cend(); } /** returns a read-only const_iterator to the element following the last element of the 1D vector or array * \only_for_vectors * \sa begin(), cend() */ template<typename Derived> inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::cend() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return const_iterator(derived(), size()); } } // namespace Eigen