EVOLUTION-MANAGER
Edit File: Redux.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_REDUX_H #define EIGEN_REDUX_H namespace Eigen { namespace internal { // TODO // * implement other kind of vectorization // * factorize code /*************************************************************************** * Part 1 : the logic deciding a strategy for vectorization and unrolling ***************************************************************************/ template<typename Func, typename Evaluator> struct redux_traits { public: typedef typename find_best_packet<typename Evaluator::Scalar,Evaluator::SizeAtCompileTime>::type PacketType; enum { PacketSize = unpacket_traits<PacketType>::size, InnerMaxSize = int(Evaluator::IsRowMajor) ? Evaluator::MaxColsAtCompileTime : Evaluator::MaxRowsAtCompileTime, OuterMaxSize = int(Evaluator::IsRowMajor) ? Evaluator::MaxRowsAtCompileTime : Evaluator::MaxColsAtCompileTime, SliceVectorizedWork = int(InnerMaxSize)==Dynamic ? Dynamic : int(OuterMaxSize)==Dynamic ? (int(InnerMaxSize)>=int(PacketSize) ? Dynamic : 0) : (int(InnerMaxSize)/int(PacketSize)) * int(OuterMaxSize) }; enum { MightVectorize = (int(Evaluator::Flags)&ActualPacketAccessBit) && (functor_traits<Func>::PacketAccess), MayLinearVectorize = bool(MightVectorize) && (int(Evaluator::Flags)&LinearAccessBit), MaySliceVectorize = bool(MightVectorize) && (int(SliceVectorizedWork)==Dynamic || int(SliceVectorizedWork)>=3) }; public: enum { Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) : int(DefaultTraversal) }; public: enum { Cost = Evaluator::SizeAtCompileTime == Dynamic ? HugeCost : Evaluator::SizeAtCompileTime * Evaluator::CoeffReadCost + (Evaluator::SizeAtCompileTime-1) * functor_traits<Func>::Cost, UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) }; public: enum { Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling }; #ifdef EIGEN_DEBUG_ASSIGN static void debug() { std::cerr << "Xpr: " << typeid(typename Evaluator::XprType).name() << std::endl; std::cerr.setf(std::ios::hex, std::ios::basefield); EIGEN_DEBUG_VAR(Evaluator::Flags) std::cerr.unsetf(std::ios::hex); EIGEN_DEBUG_VAR(InnerMaxSize) EIGEN_DEBUG_VAR(OuterMaxSize) EIGEN_DEBUG_VAR(SliceVectorizedWork) EIGEN_DEBUG_VAR(PacketSize) EIGEN_DEBUG_VAR(MightVectorize) EIGEN_DEBUG_VAR(MayLinearVectorize) EIGEN_DEBUG_VAR(MaySliceVectorize) std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl; EIGEN_DEBUG_VAR(UnrollingLimit) std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl; std::cerr << std::endl; } #endif }; /*************************************************************************** * Part 2 : unrollers ***************************************************************************/ /*** no vectorization ***/ template<typename Func, typename Evaluator, int Start, int Length> struct redux_novec_unroller { enum { HalfLength = Length/2 }; typedef typename Evaluator::Scalar Scalar; EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func) { return func(redux_novec_unroller<Func, Evaluator, Start, HalfLength>::run(eval,func), redux_novec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::run(eval,func)); } }; template<typename Func, typename Evaluator, int Start> struct redux_novec_unroller<Func, Evaluator, Start, 1> { enum { outer = Start / Evaluator::InnerSizeAtCompileTime, inner = Start % Evaluator::InnerSizeAtCompileTime }; typedef typename Evaluator::Scalar Scalar; EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func&) { return eval.coeffByOuterInner(outer, inner); } }; // This is actually dead code and will never be called. It is required // to prevent false warnings regarding failed inlining though // for 0 length run() will never be called at all. template<typename Func, typename Evaluator, int Start> struct redux_novec_unroller<Func, Evaluator, Start, 0> { typedef typename Evaluator::Scalar Scalar; EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); } }; /*** vectorization ***/ template<typename Func, typename Evaluator, int Start, int Length> struct redux_vec_unroller { template<typename PacketType> EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator &eval, const Func& func) { enum { PacketSize = unpacket_traits<PacketType>::size, HalfLength = Length/2 }; return func.packetOp( redux_vec_unroller<Func, Evaluator, Start, HalfLength>::template run<PacketType>(eval,func), redux_vec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::template run<PacketType>(eval,func) ); } }; template<typename Func, typename Evaluator, int Start> struct redux_vec_unroller<Func, Evaluator, Start, 1> { template<typename PacketType> EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator &eval, const Func&) { enum { PacketSize = unpacket_traits<PacketType>::size, index = Start * PacketSize, outer = index / int(Evaluator::InnerSizeAtCompileTime), inner = index % int(Evaluator::InnerSizeAtCompileTime), alignment = Evaluator::Alignment }; return eval.template packetByOuterInner<alignment,PacketType>(outer, inner); } }; /*************************************************************************** * Part 3 : implementation of all cases ***************************************************************************/ template<typename Func, typename Evaluator, int Traversal = redux_traits<Func, Evaluator>::Traversal, int Unrolling = redux_traits<Func, Evaluator>::Unrolling > struct redux_impl; template<typename Func, typename Evaluator> struct redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling> { typedef typename Evaluator::Scalar Scalar; template<typename XprType> EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) { eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); Scalar res; res = eval.coeffByOuterInner(0, 0); for(Index i = 1; i < xpr.innerSize(); ++i) res = func(res, eval.coeffByOuterInner(0, i)); for(Index i = 1; i < xpr.outerSize(); ++i) for(Index j = 0; j < xpr.innerSize(); ++j) res = func(res, eval.coeffByOuterInner(i, j)); return res; } }; template<typename Func, typename Evaluator> struct redux_impl<Func,Evaluator, DefaultTraversal, CompleteUnrolling> : redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> { typedef redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> Base; typedef typename Evaluator::Scalar Scalar; template<typename XprType> EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func, const XprType& /*xpr*/) { return Base::run(eval,func); } }; template<typename Func, typename Evaluator> struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling> { typedef typename Evaluator::Scalar Scalar; typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar; template<typename XprType> static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) { const Index size = xpr.size(); const Index packetSize = redux_traits<Func, Evaluator>::PacketSize; const int packetAlignment = unpacket_traits<PacketScalar>::alignment; enum { alignment0 = (bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned), alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Evaluator::Alignment) }; const Index alignedStart = internal::first_default_aligned(xpr); const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); const Index alignedEnd2 = alignedStart + alignedSize2; const Index alignedEnd = alignedStart + alignedSize; Scalar res; if(alignedSize) { PacketScalar packet_res0 = eval.template packet<alignment,PacketScalar>(alignedStart); if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop { PacketScalar packet_res1 = eval.template packet<alignment,PacketScalar>(alignedStart+packetSize); for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) { packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(index)); packet_res1 = func.packetOp(packet_res1, eval.template packet<alignment,PacketScalar>(index+packetSize)); } packet_res0 = func.packetOp(packet_res0,packet_res1); if(alignedEnd>alignedEnd2) packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(alignedEnd2)); } res = func.predux(packet_res0); for(Index index = 0; index < alignedStart; ++index) res = func(res,eval.coeff(index)); for(Index index = alignedEnd; index < size; ++index) res = func(res,eval.coeff(index)); } else // too small to vectorize anything. // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. { res = eval.coeff(0); for(Index index = 1; index < size; ++index) res = func(res,eval.coeff(index)); } return res; } }; // NOTE: for SliceVectorizedTraversal we simply bypass unrolling template<typename Func, typename Evaluator, int Unrolling> struct redux_impl<Func, Evaluator, SliceVectorizedTraversal, Unrolling> { typedef typename Evaluator::Scalar Scalar; typedef typename redux_traits<Func, Evaluator>::PacketType PacketType; template<typename XprType> EIGEN_DEVICE_FUNC static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) { eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); const Index innerSize = xpr.innerSize(); const Index outerSize = xpr.outerSize(); enum { packetSize = redux_traits<Func, Evaluator>::PacketSize }; const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; Scalar res; if(packetedInnerSize) { PacketType packet_res = eval.template packet<Unaligned,PacketType>(0,0); for(Index j=0; j<outerSize; ++j) for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize)) packet_res = func.packetOp(packet_res, eval.template packetByOuterInner<Unaligned,PacketType>(j,i)); res = func.predux(packet_res); for(Index j=0; j<outerSize; ++j) for(Index i=packetedInnerSize; i<innerSize; ++i) res = func(res, eval.coeffByOuterInner(j,i)); } else // too small to vectorize anything. // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. { res = redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>::run(eval, func, xpr); } return res; } }; template<typename Func, typename Evaluator> struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling> { typedef typename Evaluator::Scalar Scalar; typedef typename redux_traits<Func, Evaluator>::PacketType PacketType; enum { PacketSize = redux_traits<Func, Evaluator>::PacketSize, Size = Evaluator::SizeAtCompileTime, VectorizedSize = (Size / PacketSize) * PacketSize }; template<typename XprType> EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func, const XprType &xpr) { EIGEN_ONLY_USED_FOR_DEBUG(xpr) eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); if (VectorizedSize > 0) { Scalar res = func.predux(redux_vec_unroller<Func, Evaluator, 0, Size / PacketSize>::template run<PacketType>(eval,func)); if (VectorizedSize != Size) res = func(res,redux_novec_unroller<Func, Evaluator, VectorizedSize, Size-VectorizedSize>::run(eval,func)); return res; } else { return redux_novec_unroller<Func, Evaluator, 0, Size>::run(eval,func); } } }; // evaluator adaptor template<typename _XprType> class redux_evaluator : public internal::evaluator<_XprType> { typedef internal::evaluator<_XprType> Base; public: typedef _XprType XprType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit redux_evaluator(const XprType &xpr) : Base(xpr) {} typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketScalar PacketScalar; enum { MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime, MaxColsAtCompileTime = XprType::MaxColsAtCompileTime, // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator Flags = Base::Flags & ~DirectAccessBit, IsRowMajor = XprType::IsRowMajor, SizeAtCompileTime = XprType::SizeAtCompileTime, InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const { return Base::coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } template<int LoadMode, typename PacketType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketType packetByOuterInner(Index outer, Index inner) const { return Base::template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } }; } // end namespace internal /*************************************************************************** * Part 4 : public API ***************************************************************************/ /** \returns the result of a full redux operation on the whole matrix or vector using \a func * * The template parameter \a BinaryOp is the type of the functor \a func which must be * an associative operator. Both current C++98 and C++11 functor styles are handled. * * \warning the matrix must be not empty, otherwise an assertion is triggered. * * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() */ template<typename Derived> template<typename Func> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::redux(const Func& func) const { eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); typedef typename internal::redux_evaluator<Derived> ThisEvaluator; ThisEvaluator thisEval(derived()); // The initial expression is passed to the reducer as an additional argument instead of // passing it as a member of redux_evaluator to help return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func, derived()); } /** \returns the minimum of all coefficients of \c *this. * \warning the matrix must be not empty, otherwise an assertion is triggered. * \warning the result is undefined if \c *this contains NaN. */ template<typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::minCoeff() const { return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar>()); } /** \returns the maximum of all coefficients of \c *this. * \warning the matrix must be not empty, otherwise an assertion is triggered. * \warning the result is undefined if \c *this contains NaN. */ template<typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::maxCoeff() const { return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar>()); } /** \returns the sum of all coefficients of \c *this * * If \c *this is empty, then the value 0 is returned. * * \sa trace(), prod(), mean() */ template<typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::sum() const { if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) return Scalar(0); return derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>()); } /** \returns the mean of all coefficients of *this * * \sa trace(), prod(), sum() */ template<typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::mean() const { #ifdef __INTEL_COMPILER #pragma warning push #pragma warning ( disable : 2259 ) #endif return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>())) / Scalar(this->size()); #ifdef __INTEL_COMPILER #pragma warning pop #endif } /** \returns the product of all coefficients of *this * * Example: \include MatrixBase_prod.cpp * Output: \verbinclude MatrixBase_prod.out * * \sa sum(), mean(), trace() */ template<typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::prod() const { if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) return Scalar(1); return derived().redux(Eigen::internal::scalar_product_op<Scalar>()); } /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. * * \c *this can be any matrix, not necessarily square. * * \sa diagonal(), sum() */ template<typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar MatrixBase<Derived>::trace() const { return derived().diagonal().sum(); } } // end namespace Eigen #endif // EIGEN_REDUX_H