EVOLUTION-MANAGER
Edit File: ProductEvaluators.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_PRODUCTEVALUATORS_H #define EIGEN_PRODUCTEVALUATORS_H namespace Eigen { namespace internal { /** \internal * Evaluator of a product expression. * Since products require special treatments to handle all possible cases, * we simply defer the evaluation logic to a product_evaluator class * which offers more partial specialization possibilities. * * \sa class product_evaluator */ template<typename Lhs, typename Rhs, int Options> struct evaluator<Product<Lhs, Rhs, Options> > : public product_evaluator<Product<Lhs, Rhs, Options> > { typedef Product<Lhs, Rhs, Options> XprType; typedef product_evaluator<XprType> Base; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} }; // Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B" // TODO we should apply that rule only if that's really helpful template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1> struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>, const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, const Product<Lhs, Rhs, DefaultProduct> > > { static const bool value = true; }; template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1> struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>, const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, const Product<Lhs, Rhs, DefaultProduct> > > : public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > { typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>, const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, const Product<Lhs, Rhs, DefaultProduct> > XprType; typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs()) {} }; template<typename Lhs, typename Rhs, int DiagIndex> struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> > : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > { typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType; typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>( Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()), xpr.index() )) {} }; // Helper class to perform a matrix product with the destination at hand. // Depending on the sizes of the factors, there are different evaluation strategies // as controlled by internal::product_type. template< typename Lhs, typename Rhs, typename LhsShape = typename evaluator_traits<Lhs>::Shape, typename RhsShape = typename evaluator_traits<Rhs>::Shape, int ProductType = internal::product_type<Lhs,Rhs>::value> struct generic_product_impl; template<typename Lhs, typename Rhs> struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > { static const bool value = true; }; // This is the default evaluator implementation for products: // It creates a temporary and call generic_product_impl template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape> struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape> : public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject> { typedef Product<Lhs, Rhs, Options> XprType; typedef typename XprType::PlainObject PlainObject; typedef evaluator<PlainObject> Base; enum { Flags = Base::Flags | EvalBeforeNestingBit }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit product_evaluator(const XprType& xpr) : m_result(xpr.rows(), xpr.cols()) { ::new (static_cast<Base*>(this)) Base(m_result); // FIXME shall we handle nested_eval here?, // if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.) // typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested; // typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested; // typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned; // typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned; // // const LhsNested lhs(xpr.lhs()); // const RhsNested rhs(xpr.rhs()); // // generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs); generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs()); } protected: PlainObject m_result; }; // The following three shortcuts are enabled only if the scalar types match exactly. // TODO: we could enable them for different scalar types when the product is not vectorized. // Dense = Product template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense, typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> { typedef Product<Lhs,Rhs,Options> SrcXprType; static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &) { Index dstRows = src.rows(); Index dstCols = src.cols(); if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) dst.resize(dstRows, dstCols); // FIXME shall we handle nested_eval here? generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs()); } }; // Dense += Product template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense, typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> { typedef Product<Lhs,Rhs,Options> SrcXprType; static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &) { eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); // FIXME shall we handle nested_eval here? generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs()); } }; // Dense -= Product template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense, typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> { typedef Product<Lhs,Rhs,Options> SrcXprType; static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &) { eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); // FIXME shall we handle nested_eval here? generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs()); } }; // Dense ?= scalar * Product // TODO we should apply that rule if that's really helpful // for instance, this is not good for inner products template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain> struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>, const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense> { typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>, const Product<Lhs,Rhs,DefaultProduct> > SrcXprType; static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func) { call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func); } }; //---------------------------------------- // Catch "Dense ?= xpr + Product<>" expression to save one temporary // FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct template<typename OtherXpr, typename Lhs, typename Rhs> struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr, const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > { static const bool value = true; }; template<typename OtherXpr, typename Lhs, typename Rhs> struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr, const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > { static const bool value = true; }; template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2> struct assignment_from_xpr_op_product { template<typename SrcXprType, typename InitialFunc> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) { call_assignment_no_alias(dst, src.lhs(), Func1()); call_assignment_no_alias(dst, src.rhs(), Func2()); } }; #define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \ template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \ struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \ const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \ : assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \ {} EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op,add_assign_op); EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op); EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op); EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op,sub_assign_op); EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op); EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op); //---------------------------------------- template<typename Lhs, typename Rhs> struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct> { template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum(); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); } }; /*********************************************************************** * Implementation of outer dense * dense vector product ***********************************************************************/ // Column major result template<typename Dst, typename Lhs, typename Rhs, typename Func> void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&) { evaluator<Rhs> rhsEval(rhs); ei_declare_local_nested_eval(Lhs,lhs,Rhs::SizeAtCompileTime,actual_lhs); // FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored // FIXME not very good if rhs is real and lhs complex while alpha is real too const Index cols = dst.cols(); for (Index j=0; j<cols; ++j) func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs); } // Row major result template<typename Dst, typename Lhs, typename Rhs, typename Func> void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&) { evaluator<Lhs> lhsEval(lhs); ei_declare_local_nested_eval(Rhs,rhs,Lhs::SizeAtCompileTime,actual_rhs); // FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored // FIXME not very good if lhs is real and rhs complex while alpha is real too const Index rows = dst.rows(); for (Index i=0; i<rows; ++i) func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs); } template<typename Lhs, typename Rhs> struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct> { template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {}; typedef typename Product<Lhs,Rhs>::Scalar Scalar; // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose struct set { template<typename Dst, typename Src> EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } }; struct add { template<typename Dst, typename Src> EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } }; struct sub { template<typename Dst, typename Src> EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } }; struct adds { Scalar m_scale; explicit adds(const Scalar& s) : m_scale(s) {} template<typename Dst, typename Src> void EIGEN_DEVICE_FUNC operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += m_scale * src; } }; template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>()); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>()); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>()); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>()); } }; // This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo template<typename Lhs, typename Rhs, typename Derived> struct generic_product_impl_base { typedef typename Product<Lhs,Rhs>::Scalar Scalar; template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } }; template<typename Lhs, typename Rhs> struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> > { typedef typename nested_eval<Lhs,1>::type LhsNested; typedef typename nested_eval<Rhs,1>::type RhsNested; typedef typename Product<Lhs,Rhs>::Scalar Scalar; enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight }; typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType; template<typename Dest> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { LhsNested actual_lhs(lhs); RhsNested actual_rhs(rhs); internal::gemv_dense_selector<Side, (int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor, bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess) >::run(actual_lhs, actual_rhs, dst, alpha); } }; template<typename Lhs, typename Rhs> struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> { typedef typename Product<Lhs,Rhs>::Scalar Scalar; template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { // Same as: dst.noalias() = lhs.lazyProduct(rhs); // but easier on the compiler side call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>()); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { // dst.noalias() += lhs.lazyProduct(rhs); call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>()); } template<typename Dst> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) { // dst.noalias() -= lhs.lazyProduct(rhs); call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>()); } // This is a special evaluation path called from generic_product_impl<...,GemmProduct> in file GeneralMatrixMatrix.h // This variant tries to extract scalar multiples from both the LHS and RHS and factor them out. For instance: // dst {,+,-}= (s1*A)*(B*s2) // will be rewritten as: // dst {,+,-}= (s1*s2) * (A.lazyProduct(B)) // There are at least four benefits of doing so: // 1 - huge performance gain for heap-allocated matrix types as it save costly allocations. // 2 - it is faster than simply by-passing the heap allocation through stack allocation. // 3 - it makes this fallback consistent with the heavy GEMM routine. // 4 - it fully by-passes huge stack allocation attempts when multiplying huge fixed-size matrices. // (see https://stackoverflow.com/questions/54738495) // For small fixed sizes matrices, howver, the gains are less obvious, it is sometimes x2 faster, but sometimes x3 slower, // and the behavior depends also a lot on the compiler... This is why this re-writting strategy is currently // enabled only when falling back from the main GEMM. template<typename Dst, typename Func> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void eval_dynamic(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Func &func) { enum { HasScalarFactor = blas_traits<Lhs>::HasScalarFactor || blas_traits<Rhs>::HasScalarFactor, ConjLhs = blas_traits<Lhs>::NeedToConjugate, ConjRhs = blas_traits<Rhs>::NeedToConjugate }; // FIXME: in c++11 this should be auto, and extractScalarFactor should also return auto // this is important for real*complex_mat Scalar actualAlpha = blas_traits<Lhs>::extractScalarFactor(lhs) * blas_traits<Rhs>::extractScalarFactor(rhs); eval_dynamic_impl(dst, blas_traits<Lhs>::extract(lhs).template conjugateIf<ConjLhs>(), blas_traits<Rhs>::extract(rhs).template conjugateIf<ConjRhs>(), func, actualAlpha, typename conditional<HasScalarFactor,true_type,false_type>::type()); } protected: template<typename Dst, typename LhsT, typename RhsT, typename Func, typename Scalar> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s /* == 1 */, false_type) { EIGEN_UNUSED_VARIABLE(s); eigen_internal_assert(s==Scalar(1)); call_restricted_packet_assignment_no_alias(dst, lhs.lazyProduct(rhs), func); } template<typename Dst, typename LhsT, typename RhsT, typename Func, typename Scalar> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s, true_type) { call_restricted_packet_assignment_no_alias(dst, s * lhs.lazyProduct(rhs), func); } }; // This specialization enforces the use of a coefficient-based evaluation strategy template<typename Lhs, typename Rhs> struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode> : generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {}; // Case 2: Evaluate coeff by coeff // // This is mostly taken from CoeffBasedProduct.h // The main difference is that we add an extra argument to the etor_product_*_impl::run() function // for the inner dimension of the product, because evaluator object do not know their size. template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar> struct etor_product_coeff_impl; template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl; template<typename Lhs, typename Rhs, int ProductTag> struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape> : evaluator_base<Product<Lhs, Rhs, LazyProduct> > { typedef Product<Lhs, Rhs, LazyProduct> XprType; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit product_evaluator(const XprType& xpr) : m_lhs(xpr.lhs()), m_rhs(xpr.rhs()), m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that! m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed, // or perhaps declare them on the fly on the packet method... We have experiment to check what's best. m_innerDim(xpr.lhs().cols()) { EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost); EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost); EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); #if 0 std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n"; std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n"; std::cerr << "LhsAlignment= " << LhsAlignment << "\n"; std::cerr << "RhsAlignment= " << RhsAlignment << "\n"; std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n"; std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n"; std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n"; std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n"; std::cerr << "Alignment= " << Alignment << "\n"; std::cerr << "Flags= " << Flags << "\n"; #endif } // Everything below here is taken from CoeffBasedProduct.h typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested; typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested; typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned; typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned; typedef evaluator<LhsNestedCleaned> LhsEtorType; typedef evaluator<RhsNestedCleaned> RhsEtorType; enum { RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime, ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime, InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime), MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime, MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime }; typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType; typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType; enum { LhsCoeffReadCost = LhsEtorType::CoeffReadCost, RhsCoeffReadCost = RhsEtorType::CoeffReadCost, CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost : InnerSize == Dynamic ? HugeCost : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost) + (InnerSize - 1) * NumTraits<Scalar>::AddCost, Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT, LhsFlags = LhsEtorType::Flags, RhsFlags = RhsEtorType::Flags, LhsRowMajor = LhsFlags & RowMajorBit, RhsRowMajor = RhsFlags & RowMajorBit, LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size, RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size, // Here, we don't care about alignment larger than the usable packet size. LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))), RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))), SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value, CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1), CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1), EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 : (bool(RhsRowMajor) && !CanVectorizeLhs), Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit) | (EvalToRowMajor ? RowMajorBit : 0) // TODO enable vectorization for mixed types | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0) | (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0), LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)), RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)), Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment) : bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment) : 0, /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI. */ CanVectorizeInner = SameType && LhsRowMajor && (!RhsRowMajor) && (LhsFlags & RhsFlags & ActualPacketAccessBit) && (InnerSize % packet_traits<Scalar>::size == 0) }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const { return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); } /* Allow index-based non-packet access. It is impossible though to allow index-based packed access, * which is why we don't set the LinearAccessBit. * TODO: this seems possible when the result is a vector */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index index) const { const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index; const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0; return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); } template<int LoadMode, typename PacketType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packet(Index row, Index col) const { PacketType res; typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor, Unroll ? int(InnerSize) : Dynamic, LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl; PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res); return res; } template<int LoadMode, typename PacketType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packet(Index index) const { const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index; const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0; return packet<LoadMode,PacketType>(row,col); } protected: typename internal::add_const_on_value_type<LhsNested>::type m_lhs; typename internal::add_const_on_value_type<RhsNested>::type m_rhs; LhsEtorType m_lhsImpl; RhsEtorType m_rhsImpl; // TODO: Get rid of m_innerDim if known at compile time Index m_innerDim; }; template<typename Lhs, typename Rhs> struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape> : product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape> { typedef Product<Lhs, Rhs, DefaultProduct> XprType; typedef Product<Lhs, Rhs, LazyProduct> BaseProduct; typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base; enum { Flags = Base::Flags | EvalBeforeNestingBit }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit product_evaluator(const XprType& xpr) : Base(BaseProduct(xpr.lhs(),xpr.rhs())) {} }; /**************************************** *** Coeff based product, Packet path *** ****************************************/ template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode> { static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res) { etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res); res = pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res); } }; template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode> { static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res) { etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res); res = pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res); } }; template<typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode> { static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res) { res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col)); } }; template<typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode> { static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res) { res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col))); } }; template<typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode> { static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res) { res = pset1<Packet>(typename unpacket_traits<Packet>::type(0)); } }; template<typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode> { static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res) { res = pset1<Packet>(typename unpacket_traits<Packet>::type(0)); } }; template<typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode> { static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res) { res = pset1<Packet>(typename unpacket_traits<Packet>::type(0)); for(Index i = 0; i < innerDim; ++i) res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res); } }; template<typename Lhs, typename Rhs, typename Packet, int LoadMode> struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode> { static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res) { res = pset1<Packet>(typename unpacket_traits<Packet>::type(0)); for(Index i = 0; i < innerDim; ++i) res = pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res); } }; /*************************************************************************** * Triangular products ***************************************************************************/ template<int Mode, bool LhsIsTriangular, typename Lhs, bool LhsIsVector, typename Rhs, bool RhsIsVector> struct triangular_product_impl; template<typename Lhs, typename Rhs, int ProductTag> struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> > { typedef typename Product<Lhs,Rhs>::Scalar Scalar; template<typename Dest> static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1> ::run(dst, lhs.nestedExpression(), rhs, alpha); } }; template<typename Lhs, typename Rhs, int ProductTag> struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> > { typedef typename Product<Lhs,Rhs>::Scalar Scalar; template<typename Dest> static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha); } }; /*************************************************************************** * SelfAdjoint products ***************************************************************************/ template <typename Lhs, int LhsMode, bool LhsIsVector, typename Rhs, int RhsMode, bool RhsIsVector> struct selfadjoint_product_impl; template<typename Lhs, typename Rhs, int ProductTag> struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> > { typedef typename Product<Lhs,Rhs>::Scalar Scalar; template<typename Dest> static EIGEN_DEVICE_FUNC void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha); } }; template<typename Lhs, typename Rhs, int ProductTag> struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> > { typedef typename Product<Lhs,Rhs>::Scalar Scalar; template<typename Dest> static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha); } }; /*************************************************************************** * Diagonal products ***************************************************************************/ template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder> struct diagonal_product_evaluator_base : evaluator_base<Derived> { typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar; public: enum { CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost, MatrixFlags = evaluator<MatrixType>::Flags, DiagFlags = evaluator<DiagonalType>::Flags, _StorageOrder = (Derived::MaxRowsAtCompileTime==1 && Derived::MaxColsAtCompileTime!=1) ? RowMajor : (Derived::MaxColsAtCompileTime==1 && Derived::MaxRowsAtCompileTime!=1) ? ColMajor : MatrixFlags & RowMajorBit ? RowMajor : ColMajor, _SameStorageOrder = _StorageOrder == (MatrixFlags & RowMajorBit ? RowMajor : ColMajor), _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft) ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)), _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value, // FIXME currently we need same types, but in the future the next rule should be the one //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))), _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_SameStorageOrder || (MatrixFlags&LinearAccessBit)==LinearAccessBit) && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))), _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0, Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0), Alignment = evaluator<MatrixType>::Alignment, AsScalarProduct = (DiagonalType::SizeAtCompileTime==1) || (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft) || (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight) }; EIGEN_DEVICE_FUNC diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag) : m_diagImpl(diag), m_matImpl(mat) { EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost); EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const { if(AsScalarProduct) return m_diagImpl.coeff(0) * m_matImpl.coeff(idx); else return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx); } protected: template<int LoadMode,typename PacketType> EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const { return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col), internal::pset1<PacketType>(m_diagImpl.coeff(id))); } template<int LoadMode,typename PacketType> EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const { enum { InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime, DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!! }; return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col), m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id)); } evaluator<DiagonalType> m_diagImpl; evaluator<MatrixType> m_matImpl; }; // diagonal * dense template<typename Lhs, typename Rhs, int ProductKind, int ProductTag> struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape> : diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> { typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base; using Base::m_diagImpl; using Base::m_matImpl; using Base::coeff; typedef typename Base::Scalar Scalar; typedef Product<Lhs, Rhs, ProductKind> XprType; typedef typename XprType::PlainObject PlainObject; typedef typename Lhs::DiagonalVectorType DiagonalType; enum { StorageOrder = Base::_StorageOrder }; EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) : Base(xpr.rhs(), xpr.lhs().diagonal()) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const { return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col); } #ifndef EIGEN_GPUCC template<int LoadMode,typename PacketType> EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const { // FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case. // See also similar calls below. return this->template packet_impl<LoadMode,PacketType>(row,col, row, typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type()); } template<int LoadMode,typename PacketType> EIGEN_STRONG_INLINE PacketType packet(Index idx) const { return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); } #endif }; // dense * diagonal template<typename Lhs, typename Rhs, int ProductKind, int ProductTag> struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape> : diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> { typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base; using Base::m_diagImpl; using Base::m_matImpl; using Base::coeff; typedef typename Base::Scalar Scalar; typedef Product<Lhs, Rhs, ProductKind> XprType; typedef typename XprType::PlainObject PlainObject; enum { StorageOrder = Base::_StorageOrder }; EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs().diagonal()) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const { return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col); } #ifndef EIGEN_GPUCC template<int LoadMode,typename PacketType> EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const { return this->template packet_impl<LoadMode,PacketType>(row,col, col, typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type()); } template<int LoadMode,typename PacketType> EIGEN_STRONG_INLINE PacketType packet(Index idx) const { return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); } #endif }; /*************************************************************************** * Products with permutation matrices ***************************************************************************/ /** \internal * \class permutation_matrix_product * Internal helper class implementing the product between a permutation matrix and a matrix. * This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h */ template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape> struct permutation_matrix_product; template<typename ExpressionType, int Side, bool Transposed> struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> { typedef typename nested_eval<ExpressionType, 1>::type MatrixType; typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; template<typename Dest, typename PermutationType> static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) { MatrixType mat(xpr); const Index n = Side==OnTheLeft ? mat.rows() : mat.cols(); // FIXME we need an is_same for expression that is not sensitive to constness. For instance // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true. //if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat)) if(is_same_dense(dst, mat)) { // apply the permutation inplace Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size()); mask.fill(false); Index r = 0; while(r < perm.size()) { // search for the next seed while(r<perm.size() && mask[r]) r++; if(r>=perm.size()) break; // we got one, let's follow it until we are back to the seed Index k0 = r++; Index kPrev = k0; mask.coeffRef(k0) = true; for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k)) { Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k) .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); mask.coeffRef(k) = true; kPrev = k; } } } else { for(Index i = 0; i < n; ++i) { Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> (dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i) = Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime> (mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i); } } } }; template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) { permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs); } }; template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) { permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs); } }; template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs) { permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs); } }; template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs) { permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs); } }; /*************************************************************************** * Products with transpositions matrices ***************************************************************************/ // FIXME could we unify Transpositions and Permutation into a single "shape"?? /** \internal * \class transposition_matrix_product * Internal helper class implementing the product between a permutation matrix and a matrix. */ template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape> struct transposition_matrix_product { typedef typename nested_eval<ExpressionType, 1>::type MatrixType; typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; template<typename Dest, typename TranspositionType> static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr) { MatrixType mat(xpr); typedef typename TranspositionType::StorageIndex StorageIndex; const Index size = tr.size(); StorageIndex j = 0; if(!is_same_dense(dst,mat)) dst = mat; for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k) if(Index(j=tr.coeff(k))!=k) { if(Side==OnTheLeft) dst.row(k).swap(dst.row(j)); else if(Side==OnTheRight) dst.col(k).swap(dst.col(j)); } } }; template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) { transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs); } }; template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) { transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs); } }; template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs) { transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs); } }; template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag> { template<typename Dest> static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs) { transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_PRODUCT_EVALUATORS_H