EVOLUTION-MANAGER
Edit File: SymbolicIndex.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SYMBOLIC_INDEX_H #define EIGEN_SYMBOLIC_INDEX_H namespace Eigen { /** \namespace Eigen::symbolic * \ingroup Core_Module * * This namespace defines a set of classes and functions to build and evaluate symbolic expressions of scalar type Index. * Here is a simple example: * * \code * // First step, defines symbols: * struct x_tag {}; static const symbolic::SymbolExpr<x_tag> x; * struct y_tag {}; static const symbolic::SymbolExpr<y_tag> y; * struct z_tag {}; static const symbolic::SymbolExpr<z_tag> z; * * // Defines an expression: * auto expr = (x+3)/y+z; * * // And evaluate it: (c++14) * std::cout << expr.eval(x=6,y=3,z=-13) << "\n"; * * // In c++98/11, only one symbol per expression is supported for now: * auto expr98 = (3-x)/2; * std::cout << expr98.eval(x=6) << "\n"; * \endcode * * It is currently only used internally to define and manipulate the Eigen::last and Eigen::lastp1 symbols in Eigen::seq and Eigen::seqN. * */ namespace symbolic { template<typename Tag> class Symbol; template<typename Arg0> class NegateExpr; template<typename Arg1,typename Arg2> class AddExpr; template<typename Arg1,typename Arg2> class ProductExpr; template<typename Arg1,typename Arg2> class QuotientExpr; // A simple wrapper around an integral value to provide the eval method. // We could also use a free-function symbolic_eval... template<typename IndexType=Index> class ValueExpr { public: ValueExpr(IndexType val) : m_value(val) {} template<typename T> IndexType eval_impl(const T&) const { return m_value; } protected: IndexType m_value; }; // Specialization for compile-time value, // It is similar to ValueExpr(N) but this version helps the compiler to generate better code. template<int N> class ValueExpr<internal::FixedInt<N> > { public: ValueExpr() {} template<typename T> Index eval_impl(const T&) const { return N; } }; /** \class BaseExpr * \ingroup Core_Module * Common base class of any symbolic expressions */ template<typename Derived> class BaseExpr { public: const Derived& derived() const { return *static_cast<const Derived*>(this); } /** Evaluate the expression given the \a values of the symbols. * * \param values defines the values of the symbols, it can either be a SymbolValue or a std::tuple of SymbolValue * as constructed by SymbolExpr::operator= operator. * */ template<typename T> Index eval(const T& values) const { return derived().eval_impl(values); } #if EIGEN_HAS_CXX14 template<typename... Types> Index eval(Types&&... values) const { return derived().eval_impl(std::make_tuple(values...)); } #endif NegateExpr<Derived> operator-() const { return NegateExpr<Derived>(derived()); } AddExpr<Derived,ValueExpr<> > operator+(Index b) const { return AddExpr<Derived,ValueExpr<> >(derived(), b); } AddExpr<Derived,ValueExpr<> > operator-(Index a) const { return AddExpr<Derived,ValueExpr<> >(derived(), -a); } ProductExpr<Derived,ValueExpr<> > operator*(Index a) const { return ProductExpr<Derived,ValueExpr<> >(derived(),a); } QuotientExpr<Derived,ValueExpr<> > operator/(Index a) const { return QuotientExpr<Derived,ValueExpr<> >(derived(),a); } friend AddExpr<Derived,ValueExpr<> > operator+(Index a, const BaseExpr& b) { return AddExpr<Derived,ValueExpr<> >(b.derived(), a); } friend AddExpr<NegateExpr<Derived>,ValueExpr<> > operator-(Index a, const BaseExpr& b) { return AddExpr<NegateExpr<Derived>,ValueExpr<> >(-b.derived(), a); } friend ProductExpr<ValueExpr<>,Derived> operator*(Index a, const BaseExpr& b) { return ProductExpr<ValueExpr<>,Derived>(a,b.derived()); } friend QuotientExpr<ValueExpr<>,Derived> operator/(Index a, const BaseExpr& b) { return QuotientExpr<ValueExpr<>,Derived>(a,b.derived()); } template<int N> AddExpr<Derived,ValueExpr<internal::FixedInt<N> > > operator+(internal::FixedInt<N>) const { return AddExpr<Derived,ValueExpr<internal::FixedInt<N> > >(derived(), ValueExpr<internal::FixedInt<N> >()); } template<int N> AddExpr<Derived,ValueExpr<internal::FixedInt<-N> > > operator-(internal::FixedInt<N>) const { return AddExpr<Derived,ValueExpr<internal::FixedInt<-N> > >(derived(), ValueExpr<internal::FixedInt<-N> >()); } template<int N> ProductExpr<Derived,ValueExpr<internal::FixedInt<N> > > operator*(internal::FixedInt<N>) const { return ProductExpr<Derived,ValueExpr<internal::FixedInt<N> > >(derived(),ValueExpr<internal::FixedInt<N> >()); } template<int N> QuotientExpr<Derived,ValueExpr<internal::FixedInt<N> > > operator/(internal::FixedInt<N>) const { return QuotientExpr<Derived,ValueExpr<internal::FixedInt<N> > >(derived(),ValueExpr<internal::FixedInt<N> >()); } template<int N> friend AddExpr<Derived,ValueExpr<internal::FixedInt<N> > > operator+(internal::FixedInt<N>, const BaseExpr& b) { return AddExpr<Derived,ValueExpr<internal::FixedInt<N> > >(b.derived(), ValueExpr<internal::FixedInt<N> >()); } template<int N> friend AddExpr<NegateExpr<Derived>,ValueExpr<internal::FixedInt<N> > > operator-(internal::FixedInt<N>, const BaseExpr& b) { return AddExpr<NegateExpr<Derived>,ValueExpr<internal::FixedInt<N> > >(-b.derived(), ValueExpr<internal::FixedInt<N> >()); } template<int N> friend ProductExpr<ValueExpr<internal::FixedInt<N> >,Derived> operator*(internal::FixedInt<N>, const BaseExpr& b) { return ProductExpr<ValueExpr<internal::FixedInt<N> >,Derived>(ValueExpr<internal::FixedInt<N> >(),b.derived()); } template<int N> friend QuotientExpr<ValueExpr<internal::FixedInt<N> >,Derived> operator/(internal::FixedInt<N>, const BaseExpr& b) { return QuotientExpr<ValueExpr<internal::FixedInt<N> > ,Derived>(ValueExpr<internal::FixedInt<N> >(),b.derived()); } #if (!EIGEN_HAS_CXX14) template<int N> AddExpr<Derived,ValueExpr<internal::FixedInt<N> > > operator+(internal::FixedInt<N> (*)()) const { return AddExpr<Derived,ValueExpr<internal::FixedInt<N> > >(derived(), ValueExpr<internal::FixedInt<N> >()); } template<int N> AddExpr<Derived,ValueExpr<internal::FixedInt<-N> > > operator-(internal::FixedInt<N> (*)()) const { return AddExpr<Derived,ValueExpr<internal::FixedInt<-N> > >(derived(), ValueExpr<internal::FixedInt<-N> >()); } template<int N> ProductExpr<Derived,ValueExpr<internal::FixedInt<N> > > operator*(internal::FixedInt<N> (*)()) const { return ProductExpr<Derived,ValueExpr<internal::FixedInt<N> > >(derived(),ValueExpr<internal::FixedInt<N> >()); } template<int N> QuotientExpr<Derived,ValueExpr<internal::FixedInt<N> > > operator/(internal::FixedInt<N> (*)()) const { return QuotientExpr<Derived,ValueExpr<internal::FixedInt<N> > >(derived(),ValueExpr<internal::FixedInt<N> >()); } template<int N> friend AddExpr<Derived,ValueExpr<internal::FixedInt<N> > > operator+(internal::FixedInt<N> (*)(), const BaseExpr& b) { return AddExpr<Derived,ValueExpr<internal::FixedInt<N> > >(b.derived(), ValueExpr<internal::FixedInt<N> >()); } template<int N> friend AddExpr<NegateExpr<Derived>,ValueExpr<internal::FixedInt<N> > > operator-(internal::FixedInt<N> (*)(), const BaseExpr& b) { return AddExpr<NegateExpr<Derived>,ValueExpr<internal::FixedInt<N> > >(-b.derived(), ValueExpr<internal::FixedInt<N> >()); } template<int N> friend ProductExpr<ValueExpr<internal::FixedInt<N> >,Derived> operator*(internal::FixedInt<N> (*)(), const BaseExpr& b) { return ProductExpr<ValueExpr<internal::FixedInt<N> >,Derived>(ValueExpr<internal::FixedInt<N> >(),b.derived()); } template<int N> friend QuotientExpr<ValueExpr<internal::FixedInt<N> >,Derived> operator/(internal::FixedInt<N> (*)(), const BaseExpr& b) { return QuotientExpr<ValueExpr<internal::FixedInt<N> > ,Derived>(ValueExpr<internal::FixedInt<N> >(),b.derived()); } #endif template<typename OtherDerived> AddExpr<Derived,OtherDerived> operator+(const BaseExpr<OtherDerived> &b) const { return AddExpr<Derived,OtherDerived>(derived(), b.derived()); } template<typename OtherDerived> AddExpr<Derived,NegateExpr<OtherDerived> > operator-(const BaseExpr<OtherDerived> &b) const { return AddExpr<Derived,NegateExpr<OtherDerived> >(derived(), -b.derived()); } template<typename OtherDerived> ProductExpr<Derived,OtherDerived> operator*(const BaseExpr<OtherDerived> &b) const { return ProductExpr<Derived,OtherDerived>(derived(), b.derived()); } template<typename OtherDerived> QuotientExpr<Derived,OtherDerived> operator/(const BaseExpr<OtherDerived> &b) const { return QuotientExpr<Derived,OtherDerived>(derived(), b.derived()); } }; template<typename T> struct is_symbolic { // BaseExpr has no conversion ctor, so we only have to check whether T can be statically cast to its base class BaseExpr<T>. enum { value = internal::is_convertible<T,BaseExpr<T> >::value }; }; /** Represents the actual value of a symbol identified by its tag * * It is the return type of SymbolValue::operator=, and most of the time this is only way it is used. */ template<typename Tag> class SymbolValue { public: /** Default constructor from the value \a val */ SymbolValue(Index val) : m_value(val) {} /** \returns the stored value of the symbol */ Index value() const { return m_value; } protected: Index m_value; }; /** Expression of a symbol uniquely identified by the template parameter type \c tag */ template<typename tag> class SymbolExpr : public BaseExpr<SymbolExpr<tag> > { public: /** Alias to the template parameter \c tag */ typedef tag Tag; SymbolExpr() {} /** Associate the value \a val to the given symbol \c *this, uniquely identified by its \c Tag. * * The returned object should be passed to ExprBase::eval() to evaluate a given expression with this specified runtime-time value. */ SymbolValue<Tag> operator=(Index val) const { return SymbolValue<Tag>(val); } Index eval_impl(const SymbolValue<Tag> &values) const { return values.value(); } #if EIGEN_HAS_CXX14 // C++14 versions suitable for multiple symbols template<typename... Types> Index eval_impl(const std::tuple<Types...>& values) const { return std::get<SymbolValue<Tag> >(values).value(); } #endif }; template<typename Arg0> class NegateExpr : public BaseExpr<NegateExpr<Arg0> > { public: NegateExpr(const Arg0& arg0) : m_arg0(arg0) {} template<typename T> Index eval_impl(const T& values) const { return -m_arg0.eval_impl(values); } protected: Arg0 m_arg0; }; template<typename Arg0, typename Arg1> class AddExpr : public BaseExpr<AddExpr<Arg0,Arg1> > { public: AddExpr(const Arg0& arg0, const Arg1& arg1) : m_arg0(arg0), m_arg1(arg1) {} template<typename T> Index eval_impl(const T& values) const { return m_arg0.eval_impl(values) + m_arg1.eval_impl(values); } protected: Arg0 m_arg0; Arg1 m_arg1; }; template<typename Arg0, typename Arg1> class ProductExpr : public BaseExpr<ProductExpr<Arg0,Arg1> > { public: ProductExpr(const Arg0& arg0, const Arg1& arg1) : m_arg0(arg0), m_arg1(arg1) {} template<typename T> Index eval_impl(const T& values) const { return m_arg0.eval_impl(values) * m_arg1.eval_impl(values); } protected: Arg0 m_arg0; Arg1 m_arg1; }; template<typename Arg0, typename Arg1> class QuotientExpr : public BaseExpr<QuotientExpr<Arg0,Arg1> > { public: QuotientExpr(const Arg0& arg0, const Arg1& arg1) : m_arg0(arg0), m_arg1(arg1) {} template<typename T> Index eval_impl(const T& values) const { return m_arg0.eval_impl(values) / m_arg1.eval_impl(values); } protected: Arg0 m_arg0; Arg1 m_arg1; }; } // end namespace symbolic } // end namespace Eigen #endif // EIGEN_SYMBOLIC_INDEX_H