EVOLUTION-MANAGER
Edit File: ForwardDeclarations.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_FORWARDDECLARATIONS_H #define EIGEN_FORWARDDECLARATIONS_H namespace Eigen { namespace internal { template<typename T> struct traits; // here we say once and for all that traits<const T> == traits<T> // When constness must affect traits, it has to be constness on template parameters on which T itself depends. // For example, traits<Map<const T> > != traits<Map<T> >, but // traits<const Map<T> > == traits<Map<T> > template<typename T> struct traits<const T> : traits<T> {}; template<typename Derived> struct has_direct_access { enum { ret = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0 }; }; template<typename Derived> struct accessors_level { enum { has_direct_access = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0, has_write_access = (traits<Derived>::Flags & LvalueBit) ? 1 : 0, value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors) : (has_write_access ? WriteAccessors : ReadOnlyAccessors) }; }; template<typename T> struct evaluator_traits; template< typename T> struct evaluator; } // end namespace internal template<typename T> struct NumTraits; template<typename Derived> struct EigenBase; template<typename Derived> class DenseBase; template<typename Derived> class PlainObjectBase; template<typename Derived, int Level> class DenseCoeffsBase; template<typename _Scalar, int _Rows, int _Cols, int _Options = AutoAlign | #if EIGEN_GNUC_AT(3,4) // workaround a bug in at least gcc 3.4.6 // the innermost ?: ternary operator is misparsed. We write it slightly // differently and this makes gcc 3.4.6 happy, but it's ugly. // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor) ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION : Eigen::ColMajor ), #else ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor : (_Cols==1 && _Rows!=1) ? Eigen::ColMajor : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ), #endif int _MaxRows = _Rows, int _MaxCols = _Cols > class Matrix; template<typename Derived> class MatrixBase; template<typename Derived> class ArrayBase; template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged; template<typename ExpressionType, template <typename> class StorageBase > class NoAlias; template<typename ExpressionType> class NestByValue; template<typename ExpressionType> class ForceAlignedAccess; template<typename ExpressionType> class SwapWrapper; template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false> class Block; template<typename XprType, typename RowIndices, typename ColIndices> class IndexedView; template<typename XprType, int Rows=Dynamic, int Cols=Dynamic, int Order=0> class Reshaped; template<typename MatrixType, int Size=Dynamic> class VectorBlock; template<typename MatrixType> class Transpose; template<typename MatrixType> class Conjugate; template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp; template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp; template<typename ViewOp, typename MatrixType> class CwiseUnaryView; template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp; template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3> class CwiseTernaryOp; template<typename Decomposition, typename Rhstype> class Solve; template<typename XprType> class Inverse; template<typename Lhs, typename Rhs, int Option = DefaultProduct> class Product; template<typename Derived> class DiagonalBase; template<typename _DiagonalVectorType> class DiagonalWrapper; template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix; template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct; template<typename MatrixType, int Index = 0> class Diagonal; template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix; template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions; template<typename Derived> class PermutationBase; template<typename Derived> class TranspositionsBase; template<typename _IndicesType> class PermutationWrapper; template<typename _IndicesType> class TranspositionsWrapper; template<typename Derived, int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors > class MapBase; template<int OuterStrideAtCompileTime, int InnerStrideAtCompileTime> class Stride; template<int Value = Dynamic> class InnerStride; template<int Value = Dynamic> class OuterStride; template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map; template<typename Derived> class RefBase; template<typename PlainObjectType, int Options = 0, typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref; template<typename Derived> class TriangularBase; template<typename MatrixType, unsigned int Mode> class TriangularView; template<typename MatrixType, unsigned int Mode> class SelfAdjointView; template<typename MatrixType> class SparseView; template<typename ExpressionType> class WithFormat; template<typename MatrixType> struct CommaInitializer; template<typename Derived> class ReturnByValue; template<typename ExpressionType> class ArrayWrapper; template<typename ExpressionType> class MatrixWrapper; template<typename Derived> class SolverBase; template<typename XprType> class InnerIterator; namespace internal { template<typename XprType> class generic_randaccess_stl_iterator; template<typename XprType> class pointer_based_stl_iterator; template<typename XprType, DirectionType Direction> class subvector_stl_iterator; template<typename XprType, DirectionType Direction> class subvector_stl_reverse_iterator; template<typename DecompositionType> struct kernel_retval_base; template<typename DecompositionType> struct kernel_retval; template<typename DecompositionType> struct image_retval_base; template<typename DecompositionType> struct image_retval; } // end namespace internal namespace internal { template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix; } namespace internal { template<typename Lhs, typename Rhs> struct product_type; template<bool> struct EnableIf; /** \internal * \class product_evaluator * Products need their own evaluator with more template arguments allowing for * easier partial template specializations. */ template< typename T, int ProductTag = internal::product_type<typename T::Lhs,typename T::Rhs>::ret, typename LhsShape = typename evaluator_traits<typename T::Lhs>::Shape, typename RhsShape = typename evaluator_traits<typename T::Rhs>::Shape, typename LhsScalar = typename traits<typename T::Lhs>::Scalar, typename RhsScalar = typename traits<typename T::Rhs>::Scalar > struct product_evaluator; } template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value> struct ProductReturnType; // this is a workaround for sun CC template<typename Lhs, typename Rhs> struct LazyProductReturnType; namespace internal { // Provides scalar/packet-wise product and product with accumulation // with optional conjugation of the arguments. template<typename LhsScalar, typename RhsScalar, bool ConjLhs=false, bool ConjRhs=false> struct conj_helper; template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_sum_op; template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_difference_op; template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_conj_product_op; template<typename LhsScalar,typename RhsScalar=LhsScalar, int NaNPropagation=PropagateFast> struct scalar_min_op; template<typename LhsScalar,typename RhsScalar=LhsScalar, int NaNPropagation=PropagateFast> struct scalar_max_op; template<typename Scalar> struct scalar_opposite_op; template<typename Scalar> struct scalar_conjugate_op; template<typename Scalar> struct scalar_real_op; template<typename Scalar> struct scalar_imag_op; template<typename Scalar> struct scalar_abs_op; template<typename Scalar> struct scalar_abs2_op; template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_absolute_difference_op; template<typename Scalar> struct scalar_sqrt_op; template<typename Scalar> struct scalar_rsqrt_op; template<typename Scalar> struct scalar_exp_op; template<typename Scalar> struct scalar_log_op; template<typename Scalar> struct scalar_cos_op; template<typename Scalar> struct scalar_sin_op; template<typename Scalar> struct scalar_acos_op; template<typename Scalar> struct scalar_asin_op; template<typename Scalar> struct scalar_tan_op; template<typename Scalar> struct scalar_inverse_op; template<typename Scalar> struct scalar_square_op; template<typename Scalar> struct scalar_cube_op; template<typename Scalar, typename NewType> struct scalar_cast_op; template<typename Scalar> struct scalar_random_op; template<typename Scalar> struct scalar_constant_op; template<typename Scalar> struct scalar_identity_op; template<typename Scalar,bool is_complex, bool is_integer> struct scalar_sign_op; template<typename Scalar,typename ScalarExponent> struct scalar_pow_op; template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_hypot_op; template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op; template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_quotient_op; // SpecialFunctions module template<typename Scalar> struct scalar_lgamma_op; template<typename Scalar> struct scalar_digamma_op; template<typename Scalar> struct scalar_erf_op; template<typename Scalar> struct scalar_erfc_op; template<typename Scalar> struct scalar_ndtri_op; template<typename Scalar> struct scalar_igamma_op; template<typename Scalar> struct scalar_igammac_op; template<typename Scalar> struct scalar_zeta_op; template<typename Scalar> struct scalar_betainc_op; // Bessel functions in SpecialFunctions module template<typename Scalar> struct scalar_bessel_i0_op; template<typename Scalar> struct scalar_bessel_i0e_op; template<typename Scalar> struct scalar_bessel_i1_op; template<typename Scalar> struct scalar_bessel_i1e_op; template<typename Scalar> struct scalar_bessel_j0_op; template<typename Scalar> struct scalar_bessel_y0_op; template<typename Scalar> struct scalar_bessel_j1_op; template<typename Scalar> struct scalar_bessel_y1_op; template<typename Scalar> struct scalar_bessel_k0_op; template<typename Scalar> struct scalar_bessel_k0e_op; template<typename Scalar> struct scalar_bessel_k1_op; template<typename Scalar> struct scalar_bessel_k1e_op; } // end namespace internal struct IOFormat; // Array module template<typename _Scalar, int _Rows, int _Cols, int _Options = AutoAlign | #if EIGEN_GNUC_AT(3,4) // workaround a bug in at least gcc 3.4.6 // the innermost ?: ternary operator is misparsed. We write it slightly // differently and this makes gcc 3.4.6 happy, but it's ugly. // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor) ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION : Eigen::ColMajor ), #else ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor : (_Cols==1 && _Rows!=1) ? Eigen::ColMajor : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ), #endif int _MaxRows = _Rows, int _MaxCols = _Cols> class Array; template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select; template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr; template<typename ExpressionType, int Direction> class VectorwiseOp; template<typename MatrixType,int RowFactor,int ColFactor> class Replicate; template<typename MatrixType, int Direction = BothDirections> class Reverse; template<typename MatrixType> class FullPivLU; template<typename MatrixType> class PartialPivLU; namespace internal { template<typename MatrixType> struct inverse_impl; } template<typename MatrixType> class HouseholderQR; template<typename MatrixType> class ColPivHouseholderQR; template<typename MatrixType> class FullPivHouseholderQR; template<typename MatrixType> class CompleteOrthogonalDecomposition; template<typename MatrixType> class SVDBase; template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD; template<typename MatrixType> class BDCSVD; template<typename MatrixType, int UpLo = Lower> class LLT; template<typename MatrixType, int UpLo = Lower> class LDLT; template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence; template<typename Scalar> class JacobiRotation; // Geometry module: template<typename Derived, int _Dim> class RotationBase; template<typename Lhs, typename Rhs> class Cross; template<typename Derived> class QuaternionBase; template<typename Scalar> class Rotation2D; template<typename Scalar> class AngleAxis; template<typename Scalar,int Dim> class Translation; template<typename Scalar,int Dim> class AlignedBox; template<typename Scalar, int Options = AutoAlign> class Quaternion; template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform; template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine; template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane; template<typename Scalar> class UniformScaling; template<typename MatrixType,int Direction> class Homogeneous; // Sparse module: template<typename Derived> class SparseMatrixBase; // MatrixFunctions module template<typename Derived> struct MatrixExponentialReturnValue; template<typename Derived> class MatrixFunctionReturnValue; template<typename Derived> class MatrixSquareRootReturnValue; template<typename Derived> class MatrixLogarithmReturnValue; template<typename Derived> class MatrixPowerReturnValue; template<typename Derived> class MatrixComplexPowerReturnValue; namespace internal { template <typename Scalar> struct stem_function { typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; typedef ComplexScalar type(ComplexScalar, int); }; } } // end namespace Eigen #endif // EIGEN_FORWARDDECLARATIONS_H