EVOLUTION-MANAGER
Edit File: BlasUtil.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BLASUTIL_H #define EIGEN_BLASUTIL_H // This file contains many lightweight helper classes used to // implement and control fast level 2 and level 3 BLAS-like routines. namespace Eigen { namespace internal { // forward declarations template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false> struct gebp_kernel; template<typename Scalar, typename Index, typename DataMapper, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false> struct gemm_pack_rhs; template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, int StorageOrder, bool Conjugate = false, bool PanelMode = false> struct gemm_pack_lhs; template< typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int ResStorageOrder, int ResInnerStride> struct general_matrix_matrix_product; template<typename Index, typename LhsScalar, typename LhsMapper, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, typename RhsMapper, bool ConjugateRhs, int Version=Specialized> struct general_matrix_vector_product; template<bool Conjugate> struct conj_if; template<> struct conj_if<true> { template<typename T> inline T operator()(const T& x) const { return numext::conj(x); } template<typename T> inline T pconj(const T& x) const { return internal::pconj(x); } }; template<> struct conj_if<false> { template<typename T> inline const T& operator()(const T& x) const { return x; } template<typename T> inline const T& pconj(const T& x) const { return x; } }; // Generic implementation for custom complex types. template<typename LhsScalar, typename RhsScalar, bool ConjLhs, bool ConjRhs> struct conj_helper { typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar>::ReturnType Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const LhsScalar& x, const RhsScalar& y, const Scalar& c) const { return padd(c, pmul(x,y)); } EIGEN_STRONG_INLINE Scalar pmul(const LhsScalar& x, const RhsScalar& y) const { return conj_if<ConjLhs>()(x) * conj_if<ConjRhs>()(y); } }; template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false> { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); } }; template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::imag(x)*numext::real(y) - numext::real(x)*numext::imag(y)); } }; template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); } }; template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(numext::real(x)*numext::real(y) - numext::imag(x)*numext::imag(y), - numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); } }; template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const { return padd(c, pmul(x,y)); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const { return conj_if<Conj>()(x)*y; } }; template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const { return padd(c, pmul(x,y)); } EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const { return x*conj_if<Conj>()(y); } }; template<typename From,typename To> struct get_factor { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE To run(const From& x) { return To(x); } }; template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { return numext::real(x); } }; template<typename Scalar, typename Index> class BlasVectorMapper { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasVectorMapper(Scalar *data) : m_data(data) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { return m_data[i]; } template <typename Packet, int AlignmentType> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet load(Index i) const { return ploadt<Packet, AlignmentType>(m_data + i); } template <typename Packet> EIGEN_DEVICE_FUNC bool aligned(Index i) const { return (UIntPtr(m_data+i)%sizeof(Packet))==0; } protected: Scalar* m_data; }; template<typename Scalar, typename Index, int AlignmentType, int Incr=1> class BlasLinearMapper; template<typename Scalar, typename Index, int AlignmentType> class BlasLinearMapper<Scalar,Index,AlignmentType> { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data, Index incr=1) : m_data(data) { EIGEN_ONLY_USED_FOR_DEBUG(incr); eigen_assert(incr==1); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { internal::prefetch(&operator()(i)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { return m_data[i]; } template<typename PacketType> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { return ploadt<PacketType, AlignmentType>(m_data + i); } template<typename PacketType> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType &p) const { pstoret<Scalar, PacketType, AlignmentType>(m_data + i, p); } protected: Scalar *m_data; }; // Lightweight helper class to access matrix coefficients. template<typename Scalar, typename Index, int StorageOrder, int AlignmentType = Unaligned, int Incr = 1> class blas_data_mapper; // TMP to help PacketBlock store implementation. // There's currently no known use case for PacketBlock load. // The default implementation assumes ColMajor order. // It always store each packet sequentially one `stride` apart. template<typename Index, typename Scalar, typename Packet, int n, int idx, int StorageOrder> struct PacketBlockManagement { PacketBlockManagement<Index, Scalar, Packet, n, idx - 1, StorageOrder> pbm; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock<Packet, n> &block) const { pbm.store(to, stride, i, j, block); pstoreu<Scalar>(to + i + (j + idx)*stride, block.packet[idx]); } }; // PacketBlockManagement specialization to take care of RowMajor order without ifs. template<typename Index, typename Scalar, typename Packet, int n, int idx> struct PacketBlockManagement<Index, Scalar, Packet, n, idx, RowMajor> { PacketBlockManagement<Index, Scalar, Packet, n, idx - 1, RowMajor> pbm; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock<Packet, n> &block) const { pbm.store(to, stride, i, j, block); pstoreu<Scalar>(to + j + (i + idx)*stride, block.packet[idx]); } }; template<typename Index, typename Scalar, typename Packet, int n, int StorageOrder> struct PacketBlockManagement<Index, Scalar, Packet, n, -1, StorageOrder> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock<Packet, n> &block) const { EIGEN_UNUSED_VARIABLE(to); EIGEN_UNUSED_VARIABLE(stride); EIGEN_UNUSED_VARIABLE(i); EIGEN_UNUSED_VARIABLE(j); EIGEN_UNUSED_VARIABLE(block); } }; template<typename Index, typename Scalar, typename Packet, int n> struct PacketBlockManagement<Index, Scalar, Packet, n, -1, RowMajor> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock<Packet, n> &block) const { EIGEN_UNUSED_VARIABLE(to); EIGEN_UNUSED_VARIABLE(stride); EIGEN_UNUSED_VARIABLE(i); EIGEN_UNUSED_VARIABLE(j); EIGEN_UNUSED_VARIABLE(block); } }; template<typename Scalar, typename Index, int StorageOrder, int AlignmentType> class blas_data_mapper<Scalar,Index,StorageOrder,AlignmentType,1> { public: typedef BlasLinearMapper<Scalar, Index, AlignmentType> LinearMapper; typedef BlasVectorMapper<Scalar, Index> VectorMapper; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr=1) : m_data(data), m_stride(stride) { EIGEN_ONLY_USED_FOR_DEBUG(incr); eigen_assert(incr==1); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType> getSubMapper(Index i, Index j) const { return blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType>(&operator()(i, j), m_stride); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { return LinearMapper(&operator()(i, j)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { return VectorMapper(&operator()(i, j)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; } template<typename PacketType> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { return ploadt<PacketType, AlignmentType>(&operator()(i, j)); } template <typename PacketT, int AlignmentT> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { return ploadt<PacketT, AlignmentT>(&operator()(i, j)); } template<typename SubPacket> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const { pscatter<Scalar, SubPacket>(&operator()(i, j), p, m_stride); } template<typename SubPacket> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { return pgather<Scalar, SubPacket>(&operator()(i, j), m_stride); } EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; } EIGEN_DEVICE_FUNC Index firstAligned(Index size) const { if (UIntPtr(m_data)%sizeof(Scalar)) { return -1; } return internal::first_default_aligned(m_data, size); } template<typename SubPacket, int n> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, const PacketBlock<SubPacket, n> &block) const { PacketBlockManagement<Index, Scalar, SubPacket, n, n-1, StorageOrder> pbm; pbm.store(m_data, m_stride, i, j, block); } protected: Scalar* EIGEN_RESTRICT m_data; const Index m_stride; }; // Implementation of non-natural increment (i.e. inner-stride != 1) // The exposed API is not complete yet compared to the Incr==1 case // because some features makes less sense in this case. template<typename Scalar, typename Index, int AlignmentType, int Incr> class BlasLinearMapper { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data,Index incr) : m_data(data), m_incr(incr) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { internal::prefetch(&operator()(i)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { return m_data[i*m_incr.value()]; } template<typename PacketType> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { return pgather<Scalar,PacketType>(m_data + i*m_incr.value(), m_incr.value()); } template<typename PacketType> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType &p) const { pscatter<Scalar, PacketType>(m_data + i*m_incr.value(), p, m_incr.value()); } protected: Scalar *m_data; const internal::variable_if_dynamic<Index,Incr> m_incr; }; template<typename Scalar, typename Index, int StorageOrder, int AlignmentType,int Incr> class blas_data_mapper { public: typedef BlasLinearMapper<Scalar, Index, AlignmentType,Incr> LinearMapper; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr) : m_data(data), m_stride(stride), m_incr(incr) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper getSubMapper(Index i, Index j) const { return blas_data_mapper(&operator()(i, j), m_stride, m_incr.value()); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { return LinearMapper(&operator()(i, j), m_incr.value()); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { return m_data[StorageOrder==RowMajor ? j*m_incr.value() + i*m_stride : i*m_incr.value() + j*m_stride]; } template<typename PacketType> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { return pgather<Scalar,PacketType>(&operator()(i, j),m_incr.value()); } template <typename PacketT, int AlignmentT> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { return pgather<Scalar,PacketT>(&operator()(i, j),m_incr.value()); } template<typename SubPacket> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const { pscatter<Scalar, SubPacket>(&operator()(i, j), p, m_stride); } template<typename SubPacket> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { return pgather<Scalar, SubPacket>(&operator()(i, j), m_stride); } // storePacketBlock_helper defines a way to access values inside the PacketBlock, this is essentially required by the Complex types. template<typename SubPacket, typename ScalarT, int n, int idx> struct storePacketBlock_helper { storePacketBlock_helper<SubPacket, ScalarT, n, idx-1> spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>* sup, Index i, Index j, const PacketBlock<SubPacket, n>& block) const { spbh.store(sup, i,j,block); for(int l = 0; l < unpacket_traits<SubPacket>::size; l++) { ScalarT *v = &sup->operator()(i+l, j+idx); *v = block.packet[idx][l]; } } }; template<typename SubPacket, int n, int idx> struct storePacketBlock_helper<SubPacket, std::complex<float>, n, idx> { storePacketBlock_helper<SubPacket, std::complex<float>, n, idx-1> spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>* sup, Index i, Index j, const PacketBlock<SubPacket, n>& block) const { spbh.store(sup,i,j,block); for(int l = 0; l < unpacket_traits<SubPacket>::size; l++) { std::complex<float> *v = &sup->operator()(i+l, j+idx); v->real(block.packet[idx].v[2*l+0]); v->imag(block.packet[idx].v[2*l+1]); } } }; template<typename SubPacket, int n, int idx> struct storePacketBlock_helper<SubPacket, std::complex<double>, n, idx> { storePacketBlock_helper<SubPacket, std::complex<double>, n, idx-1> spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>* sup, Index i, Index j, const PacketBlock<SubPacket, n>& block) const { spbh.store(sup,i,j,block); for(int l = 0; l < unpacket_traits<SubPacket>::size; l++) { std::complex<double> *v = &sup->operator()(i+l, j+idx); v->real(block.packet[idx].v[2*l+0]); v->imag(block.packet[idx].v[2*l+1]); } } }; template<typename SubPacket, typename ScalarT, int n> struct storePacketBlock_helper<SubPacket, ScalarT, n, -1> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>*, Index, Index, const PacketBlock<SubPacket, n>& ) const { } }; template<typename SubPacket, int n> struct storePacketBlock_helper<SubPacket, std::complex<float>, n, -1> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>*, Index, Index, const PacketBlock<SubPacket, n>& ) const { } }; template<typename SubPacket, int n> struct storePacketBlock_helper<SubPacket, std::complex<double>, n, -1> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>*, Index, Index, const PacketBlock<SubPacket, n>& ) const { } }; // This function stores a PacketBlock on m_data, this approach is really quite slow compare to Incr=1 and should be avoided when possible. template<typename SubPacket, int n> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, const PacketBlock<SubPacket, n>&block) const { storePacketBlock_helper<SubPacket, Scalar, n, n-1> spb; spb.store(this, i,j,block); } protected: Scalar* EIGEN_RESTRICT m_data; const Index m_stride; const internal::variable_if_dynamic<Index,Incr> m_incr; }; // lightweight helper class to access matrix coefficients (const version) template<typename Scalar, typename Index, int StorageOrder> class const_blas_data_mapper : public blas_data_mapper<const Scalar, Index, StorageOrder> { public: EIGEN_ALWAYS_INLINE const_blas_data_mapper(const Scalar *data, Index stride) : blas_data_mapper<const Scalar, Index, StorageOrder>(data, stride) {} EIGEN_ALWAYS_INLINE const_blas_data_mapper<Scalar, Index, StorageOrder> getSubMapper(Index i, Index j) const { return const_blas_data_mapper<Scalar, Index, StorageOrder>(&(this->operator()(i, j)), this->m_stride); } }; /* Helper class to analyze the factors of a Product expression. * In particular it allows to pop out operator-, scalar multiples, * and conjugate */ template<typename XprType> struct blas_traits { typedef typename traits<XprType>::Scalar Scalar; typedef const XprType& ExtractType; typedef XprType _ExtractType; enum { IsComplex = NumTraits<Scalar>::IsComplex, IsTransposed = false, NeedToConjugate = false, HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit) && ( bool(XprType::IsVectorAtCompileTime) || int(inner_stride_at_compile_time<XprType>::ret) == 1) ) ? 1 : 0, HasScalarFactor = false }; typedef typename conditional<bool(HasUsableDirectAccess), ExtractType, typename _ExtractType::PlainObject >::type DirectLinearAccessType; static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return x; } static inline EIGEN_DEVICE_FUNC const Scalar extractScalarFactor(const XprType&) { return Scalar(1); } }; // pop conjugate template<typename Scalar, typename NestedXpr> struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> > : blas_traits<NestedXpr> { typedef blas_traits<NestedXpr> Base; typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; enum { IsComplex = NumTraits<Scalar>::IsComplex, NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex }; static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); } }; // pop scalar multiple template<typename Scalar, typename NestedXpr, typename Plain> struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain>, NestedXpr> > : blas_traits<NestedXpr> { enum { HasScalarFactor = true }; typedef blas_traits<NestedXpr> Base; typedef CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain>, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return Base::extract(x.rhs()); } static inline EIGEN_DEVICE_FUNC Scalar extractScalarFactor(const XprType& x) { return x.lhs().functor().m_other * Base::extractScalarFactor(x.rhs()); } }; template<typename Scalar, typename NestedXpr, typename Plain> struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, NestedXpr, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain> > > : blas_traits<NestedXpr> { enum { HasScalarFactor = true }; typedef blas_traits<NestedXpr> Base; typedef CwiseBinaryOp<scalar_product_op<Scalar>, NestedXpr, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain> > XprType; typedef typename Base::ExtractType ExtractType; static inline ExtractType extract(const XprType& x) { return Base::extract(x.lhs()); } static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.lhs()) * x.rhs().functor().m_other; } }; template<typename Scalar, typename Plain1, typename Plain2> struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain1>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain2> > > : blas_traits<CwiseNullaryOp<scalar_constant_op<Scalar>,Plain1> > {}; // pop opposite template<typename Scalar, typename NestedXpr> struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> > : blas_traits<NestedXpr> { enum { HasScalarFactor = true }; typedef blas_traits<NestedXpr> Base; typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return - Base::extractScalarFactor(x.nestedExpression()); } }; // pop/push transpose template<typename NestedXpr> struct blas_traits<Transpose<NestedXpr> > : blas_traits<NestedXpr> { typedef typename NestedXpr::Scalar Scalar; typedef blas_traits<NestedXpr> Base; typedef Transpose<NestedXpr> XprType; typedef Transpose<const typename Base::_ExtractType> ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS typedef Transpose<const typename Base::_ExtractType> _ExtractType; typedef typename conditional<bool(Base::HasUsableDirectAccess), ExtractType, typename ExtractType::PlainObject >::type DirectLinearAccessType; enum { IsTransposed = Base::IsTransposed ? 0 : 1 }; static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); } static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); } }; template<typename T> struct blas_traits<const T> : blas_traits<T> {}; template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess> struct extract_data_selector { static const typename T::Scalar* run(const T& m) { return blas_traits<T>::extract(m).data(); } }; template<typename T> struct extract_data_selector<T,false> { static typename T::Scalar* run(const T&) { return 0; } }; template<typename T> const typename T::Scalar* extract_data(const T& m) { return extract_data_selector<T>::run(m); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_BLASUTIL_H