EVOLUTION-MANAGER
Edit File: NullaryFunctors.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_NULLARY_FUNCTORS_H #define EIGEN_NULLARY_FUNCTORS_H namespace Eigen { namespace internal { template<typename Scalar> struct scalar_constant_op { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; } template<typename PacketType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1<PacketType>(m_other); } const Scalar m_other; }; template<typename Scalar> struct functor_traits<scalar_constant_op<Scalar> > { enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; }; template<typename Scalar> struct scalar_identity_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op) template<typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); } }; template<typename Scalar> struct functor_traits<scalar_identity_op<Scalar> > { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; }; template <typename Scalar, bool IsInteger> struct linspaced_op_impl; template <typename Scalar> struct linspaced_op_impl<Scalar,/*IsInteger*/false> { typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) : m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : Scalar((high-low)/RealScalar(num_steps-1))), m_flip(numext::abs(high)<numext::abs(low)) {} template<typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { if(m_flip) return (i==0)? m_low : Scalar(m_high - RealScalar(m_size1-i)*m_step); else return (i==m_size1)? m_high : Scalar(m_low + RealScalar(i)*m_step); } template<typename Packet, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { // Principle: // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) if(m_flip) { Packet pi = plset<Packet>(Scalar(i-m_size1)); Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi)); if (EIGEN_PREDICT_TRUE(i != 0)) return res; Packet mask = pcmp_lt(pset1<Packet>(0), plset<Packet>(0)); return pselect<Packet>(mask, res, pset1<Packet>(m_low)); } else { Packet pi = plset<Packet>(Scalar(i)); Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi)); if(EIGEN_PREDICT_TRUE(i != m_size1-unpacket_traits<Packet>::size+1)) return res; Packet mask = pcmp_lt(plset<Packet>(0), pset1<Packet>(unpacket_traits<Packet>::size-1)); return pselect<Packet>(mask, res, pset1<Packet>(m_high)); } } const Scalar m_low; const Scalar m_high; const Index m_size1; const Scalar m_step; const bool m_flip; }; template <typename Scalar> struct linspaced_op_impl<Scalar,/*IsInteger*/true> { EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) : m_low(low), m_multiplier((high-low)/convert_index<Scalar>(num_steps<=1 ? 1 : num_steps-1)), m_divisor(convert_index<Scalar>((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))), m_use_divisor(num_steps>1 && (numext::abs(high-low)+1)<num_steps) {} template<typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { if(m_use_divisor) return m_low + convert_index<Scalar>(i)/m_divisor; else return m_low + convert_index<Scalar>(i)*m_multiplier; } const Scalar m_low; const Scalar m_multiplier; const Scalar m_divisor; const bool m_use_divisor; }; // ----- Linspace functor ---------------------------------------------------------------- // Forward declaration (we default to random access which does not really give // us a speed gain when using packet access but it allows to use the functor in // nested expressions). template <typename Scalar> struct linspaced_op; template <typename Scalar> struct functor_traits< linspaced_op<Scalar> > { enum { Cost = 1, PacketAccess = (!NumTraits<Scalar>::IsInteger) && packet_traits<Scalar>::HasSetLinear && packet_traits<Scalar>::HasBlend, /*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is currently disabled IsRepeatable = true }; }; template <typename Scalar> struct linspaced_op { EIGEN_DEVICE_FUNC linspaced_op(const Scalar& low, const Scalar& high, Index num_steps) : impl((num_steps==1 ? high : low),high,num_steps) {} template<typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); } template<typename Packet,typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.template packetOp<Packet>(i); } // This proxy object handles the actual required temporaries and the different // implementations (integer vs. floating point). const linspaced_op_impl<Scalar,NumTraits<Scalar>::IsInteger> impl; }; // Linear access is automatically determined from the operator() prototypes available for the given functor. // If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently // and linear access is not possible. In all other cases, linear access is enabled. // Users should not have to deal with this structure. template<typename Functor> struct functor_has_linear_access { enum { ret = !has_binary_operator<Functor>::value }; }; // For unreliable compilers, let's specialize the has_*ary_operator // helpers so that at least built-in nullary functors work fine. #if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600)) template<typename Scalar,typename IndexType> struct has_nullary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 1}; }; template<typename Scalar,typename IndexType> struct has_unary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; }; template<typename Scalar,typename IndexType> struct has_binary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; }; template<typename Scalar,typename IndexType> struct has_nullary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; }; template<typename Scalar,typename IndexType> struct has_unary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; }; template<typename Scalar,typename IndexType> struct has_binary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 1}; }; template<typename Scalar,typename IndexType> struct has_nullary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 0}; }; template<typename Scalar,typename IndexType> struct has_unary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 1}; }; template<typename Scalar,typename IndexType> struct has_binary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 0}; }; template<typename Scalar,typename IndexType> struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; }; template<typename Scalar,typename IndexType> struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; }; template<typename Scalar,typename IndexType> struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; }; #endif } // end namespace internal } // end namespace Eigen #endif // EIGEN_NULLARY_FUNCTORS_H