EVOLUTION-MANAGER
Edit File: __init__.py
# This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """# tf.experimental.numpy: NumPy API on TensorFlow. This module provides a subset of NumPy API, built on top of TensorFlow operations. APIs are based on and have been tested with NumPy 1.16 version. The set of supported APIs may be expanded over time. Also future releases may change the baseline version of NumPy API being supported. A list of some systematic differences with NumPy are listed later in the "Differences with NumPy" section. ## Getting Started Please also see [TensorFlow NumPy Guide]( https://www.tensorflow.org/guide/tf_numpy). In the code snippets below, we will assume that `tf.experimental.numpy` is imported as `tnp` and NumPy is imported as `np` ```python print(tnp.ones([2,1]) + tnp.ones([1, 2])) ``` ## Types The module provides an `ndarray` class which wraps an immutable `tf.Tensor`. Additional functions are provided which accept array-like objects. Here array-like objects includes `ndarrays` as defined by this module, as well as `tf.Tensor`, in addition to types accepted by NumPy. A subset of NumPy dtypes are supported. Type promotion follows NumPy semantics. ```python print(tnp.ones([1, 2], dtype=tnp.int16) + tnp.ones([2, 1], dtype=tnp.uint8)) ``` ## Array Interface The `ndarray` class implements the `__array__` interface. This should allow these objects to be passed into contexts that expect a NumPy or array-like object (e.g. matplotlib). ```python np.sum(tnp.ones([1, 2]) + np.ones([2, 1])) ``` ## TF Interoperability The TF-NumPy API calls can be interleaved with TensorFlow calls without incurring Tensor data copies. This is true even if the `ndarray` or `tf.Tensor` is placed on a non-CPU device. In general, the expected behavior should be on par with that of code involving `tf.Tensor` and running stateless TensorFlow functions on them. ```python tnp.sum(tnp.ones([1, 2]) + tf.ones([2, 1])) ``` Note that the `__array_priority__` is currently chosen to be lower than `tf.Tensor`. Hence the `+` operator above returns a `tf.Tensor`. Additional examples of interopability include: * using `with tf.GradientTape()` scope to compute gradients through the TF-NumPy API calls. * using `tf.distribution.Strategy` scope for distributed execution * using `tf.vectorized_map()` for speeding up code using auto-vectorization ## Device Support Given that `ndarray` and functions wrap TensorFlow constructs, the code will have GPU and TPU support on par with TensorFlow. Device placement can be controlled by using `with tf.device` scopes. Note that these devices could be local or remote. ```python with tf.device("GPU:0"): x = tnp.ones([1, 2]) print(tf.convert_to_tensor(x).device) ``` ## Graph and Eager Modes Eager mode execution should typically match NumPy semantics of executing op-by-op. However the same code can be executed in graph mode, by putting it inside a `tf.function`. The function body can contain NumPy code, and the inputs can be `ndarray` as well. ```python @tf.function def f(x, y): return tnp.sum(x + y) f(tnp.ones([1, 2]), tf.ones([2, 1])) ``` Python control flow based on `ndarray` values will be translated by [autograph](https://www.tensorflow.org/code/tensorflow/python/autograph/g3doc/reference/index.md) into `tf.cond` and `tf.while_loop` constructs. The code can be XLA compiled for further optimizations. However, note that graph mode execution can change behavior of certain operations since symbolic execution may not have information that is computed during runtime. Some differences are: * Shapes can be incomplete or unknown in graph mode. This means that `ndarray.shape`, `ndarray.size` and `ndarray.ndim` can return `ndarray` objects instead of returning integer (or tuple of integer) values. * `__len__`, `__iter__` and `__index__` properties of `ndarray` may similarly not be supported in graph mode. Code using these may need to change to explicit shape operations or control flow constructs. * Also note the [autograph limitations]( https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md). ## Mutation and Variables `ndarrays` currently wrap immutable `tf.Tensor`. Hence mutation operations like slice assigns are not supported. This may change in the future. Note however that one can directly construct a `tf.Variable` and use that with the TF-NumPy APIs. ```python tf_var = tf.Variable(2.0) tf_var.assign_add(tnp.square(tf_var)) ``` ## Differences with NumPy Here is a non-exhaustive list of differences: * Not all dtypes are currently supported. e.g. `np.float96`, `np.float128`. `np.object`, `np.str`, `np.recarray` types are not supported. * `ndarray` storage is in C order only. Fortran order, views, `stride_tricks` are not supported. * Only a subset of functions and modules are supported. This set will be expanded over time. For supported functions, some arguments or argument values may not be supported. This differences are generally provide in the function comments. Full `ufunc` support is also not provided. * Buffer mutation is currently not supported. `ndarrays` wrap immutable tensors. This means that output buffer arguments (e..g `out` in ufuncs) are not supported * NumPy C API is not supported. NumPy's Cython and Swig integration are not supported. """ from __future__ import print_function as _print_function import sys as _sys from . import random from tensorflow.python.ops.numpy_ops import issubdtype from tensorflow.python.ops.numpy_ops import max from tensorflow.python.ops.numpy_ops import min from tensorflow.python.ops.numpy_ops import round from tensorflow.python.ops.numpy_ops.np_array_ops import all from tensorflow.python.ops.numpy_ops.np_array_ops import amax from tensorflow.python.ops.numpy_ops.np_array_ops import amin from tensorflow.python.ops.numpy_ops.np_array_ops import any from tensorflow.python.ops.numpy_ops.np_array_ops import arange from tensorflow.python.ops.numpy_ops.np_array_ops import around from tensorflow.python.ops.numpy_ops.np_array_ops import array from tensorflow.python.ops.numpy_ops.np_array_ops import asanyarray from tensorflow.python.ops.numpy_ops.np_array_ops import asarray from tensorflow.python.ops.numpy_ops.np_array_ops import ascontiguousarray from tensorflow.python.ops.numpy_ops.np_array_ops import atleast_1d from tensorflow.python.ops.numpy_ops.np_array_ops import atleast_2d from tensorflow.python.ops.numpy_ops.np_array_ops import atleast_3d from tensorflow.python.ops.numpy_ops.np_array_ops import broadcast_arrays from tensorflow.python.ops.numpy_ops.np_array_ops import broadcast_to from tensorflow.python.ops.numpy_ops.np_array_ops import compress from tensorflow.python.ops.numpy_ops.np_array_ops import copy from tensorflow.python.ops.numpy_ops.np_array_ops import cumprod from tensorflow.python.ops.numpy_ops.np_array_ops import cumsum from tensorflow.python.ops.numpy_ops.np_array_ops import diag from tensorflow.python.ops.numpy_ops.np_array_ops import diag_indices from tensorflow.python.ops.numpy_ops.np_array_ops import diagflat from tensorflow.python.ops.numpy_ops.np_array_ops import diagonal from tensorflow.python.ops.numpy_ops.np_array_ops import dsplit from tensorflow.python.ops.numpy_ops.np_array_ops import dstack from tensorflow.python.ops.numpy_ops.np_array_ops import empty from tensorflow.python.ops.numpy_ops.np_array_ops import empty_like from tensorflow.python.ops.numpy_ops.np_array_ops import expand_dims from tensorflow.python.ops.numpy_ops.np_array_ops import eye from tensorflow.python.ops.numpy_ops.np_array_ops import flip from tensorflow.python.ops.numpy_ops.np_array_ops import fliplr from tensorflow.python.ops.numpy_ops.np_array_ops import flipud from tensorflow.python.ops.numpy_ops.np_array_ops import full from tensorflow.python.ops.numpy_ops.np_array_ops import full_like from tensorflow.python.ops.numpy_ops.np_array_ops import hsplit from tensorflow.python.ops.numpy_ops.np_array_ops import hstack from tensorflow.python.ops.numpy_ops.np_array_ops import identity from tensorflow.python.ops.numpy_ops.np_array_ops import imag from tensorflow.python.ops.numpy_ops.np_array_ops import isscalar from tensorflow.python.ops.numpy_ops.np_array_ops import ix_ from tensorflow.python.ops.numpy_ops.np_array_ops import mean from tensorflow.python.ops.numpy_ops.np_array_ops import moveaxis from tensorflow.python.ops.numpy_ops.np_array_ops import ndim from tensorflow.python.ops.numpy_ops.np_array_ops import newaxis from tensorflow.python.ops.numpy_ops.np_array_ops import nonzero from tensorflow.python.ops.numpy_ops.np_array_ops import ones from tensorflow.python.ops.numpy_ops.np_array_ops import ones_like from tensorflow.python.ops.numpy_ops.np_array_ops import pad from tensorflow.python.ops.numpy_ops.np_array_ops import prod from tensorflow.python.ops.numpy_ops.np_array_ops import ravel from tensorflow.python.ops.numpy_ops.np_array_ops import real from tensorflow.python.ops.numpy_ops.np_array_ops import repeat from tensorflow.python.ops.numpy_ops.np_array_ops import reshape from tensorflow.python.ops.numpy_ops.np_array_ops import roll from tensorflow.python.ops.numpy_ops.np_array_ops import rot90 from tensorflow.python.ops.numpy_ops.np_array_ops import select from tensorflow.python.ops.numpy_ops.np_array_ops import shape from tensorflow.python.ops.numpy_ops.np_array_ops import sign from tensorflow.python.ops.numpy_ops.np_array_ops import size from tensorflow.python.ops.numpy_ops.np_array_ops import split from tensorflow.python.ops.numpy_ops.np_array_ops import squeeze from tensorflow.python.ops.numpy_ops.np_array_ops import stack from tensorflow.python.ops.numpy_ops.np_array_ops import std from tensorflow.python.ops.numpy_ops.np_array_ops import sum from tensorflow.python.ops.numpy_ops.np_array_ops import swapaxes from tensorflow.python.ops.numpy_ops.np_array_ops import take from tensorflow.python.ops.numpy_ops.np_array_ops import take_along_axis from tensorflow.python.ops.numpy_ops.np_array_ops import transpose from tensorflow.python.ops.numpy_ops.np_array_ops import tri from tensorflow.python.ops.numpy_ops.np_array_ops import tril from tensorflow.python.ops.numpy_ops.np_array_ops import triu from tensorflow.python.ops.numpy_ops.np_array_ops import vander from tensorflow.python.ops.numpy_ops.np_array_ops import var from tensorflow.python.ops.numpy_ops.np_array_ops import vsplit from tensorflow.python.ops.numpy_ops.np_array_ops import vstack from tensorflow.python.ops.numpy_ops.np_array_ops import where from tensorflow.python.ops.numpy_ops.np_array_ops import zeros from tensorflow.python.ops.numpy_ops.np_array_ops import zeros_like from tensorflow.python.ops.numpy_ops.np_arrays import ndarray from tensorflow.python.ops.numpy_ops.np_dtypes import bool_ from tensorflow.python.ops.numpy_ops.np_dtypes import complex128 from tensorflow.python.ops.numpy_ops.np_dtypes import complex64 from tensorflow.python.ops.numpy_ops.np_dtypes import complex_ from tensorflow.python.ops.numpy_ops.np_dtypes import float16 from tensorflow.python.ops.numpy_ops.np_dtypes import float32 from tensorflow.python.ops.numpy_ops.np_dtypes import float64 from tensorflow.python.ops.numpy_ops.np_dtypes import float_ from tensorflow.python.ops.numpy_ops.np_dtypes import iinfo from tensorflow.python.ops.numpy_ops.np_dtypes import inexact from tensorflow.python.ops.numpy_ops.np_dtypes import int16 from tensorflow.python.ops.numpy_ops.np_dtypes import int32 from tensorflow.python.ops.numpy_ops.np_dtypes import int64 from tensorflow.python.ops.numpy_ops.np_dtypes import int8 from tensorflow.python.ops.numpy_ops.np_dtypes import int_ from tensorflow.python.ops.numpy_ops.np_dtypes import object_ from tensorflow.python.ops.numpy_ops.np_dtypes import string_ from tensorflow.python.ops.numpy_ops.np_dtypes import uint16 from tensorflow.python.ops.numpy_ops.np_dtypes import uint32 from tensorflow.python.ops.numpy_ops.np_dtypes import uint64 from tensorflow.python.ops.numpy_ops.np_dtypes import uint8 from tensorflow.python.ops.numpy_ops.np_dtypes import unicode_ from tensorflow.python.ops.numpy_ops.np_math_ops import abs from tensorflow.python.ops.numpy_ops.np_math_ops import absolute from tensorflow.python.ops.numpy_ops.np_math_ops import add from tensorflow.python.ops.numpy_ops.np_math_ops import allclose from tensorflow.python.ops.numpy_ops.np_math_ops import angle from tensorflow.python.ops.numpy_ops.np_math_ops import append from tensorflow.python.ops.numpy_ops.np_math_ops import arccos from tensorflow.python.ops.numpy_ops.np_math_ops import arccosh from tensorflow.python.ops.numpy_ops.np_math_ops import arcsin from tensorflow.python.ops.numpy_ops.np_math_ops import arcsinh from tensorflow.python.ops.numpy_ops.np_math_ops import arctan from tensorflow.python.ops.numpy_ops.np_math_ops import arctan2 from tensorflow.python.ops.numpy_ops.np_math_ops import arctanh from tensorflow.python.ops.numpy_ops.np_math_ops import argmax from tensorflow.python.ops.numpy_ops.np_math_ops import argmin from tensorflow.python.ops.numpy_ops.np_math_ops import argsort from tensorflow.python.ops.numpy_ops.np_math_ops import array_equal from tensorflow.python.ops.numpy_ops.np_math_ops import average from tensorflow.python.ops.numpy_ops.np_math_ops import bitwise_and from tensorflow.python.ops.numpy_ops.np_math_ops import bitwise_not from tensorflow.python.ops.numpy_ops.np_math_ops import bitwise_or from tensorflow.python.ops.numpy_ops.np_math_ops import bitwise_xor from tensorflow.python.ops.numpy_ops.np_math_ops import cbrt from tensorflow.python.ops.numpy_ops.np_math_ops import ceil from tensorflow.python.ops.numpy_ops.np_math_ops import clip from tensorflow.python.ops.numpy_ops.np_math_ops import concatenate from tensorflow.python.ops.numpy_ops.np_math_ops import conj from tensorflow.python.ops.numpy_ops.np_math_ops import conjugate from tensorflow.python.ops.numpy_ops.np_math_ops import cos from tensorflow.python.ops.numpy_ops.np_math_ops import cosh from tensorflow.python.ops.numpy_ops.np_math_ops import count_nonzero from tensorflow.python.ops.numpy_ops.np_math_ops import cross from tensorflow.python.ops.numpy_ops.np_math_ops import deg2rad from tensorflow.python.ops.numpy_ops.np_math_ops import diff from tensorflow.python.ops.numpy_ops.np_math_ops import divide from tensorflow.python.ops.numpy_ops.np_math_ops import divmod from tensorflow.python.ops.numpy_ops.np_math_ops import dot from tensorflow.python.ops.numpy_ops.np_math_ops import e from tensorflow.python.ops.numpy_ops.np_math_ops import einsum from tensorflow.python.ops.numpy_ops.np_math_ops import equal from tensorflow.python.ops.numpy_ops.np_math_ops import exp from tensorflow.python.ops.numpy_ops.np_math_ops import exp2 from tensorflow.python.ops.numpy_ops.np_math_ops import expm1 from tensorflow.python.ops.numpy_ops.np_math_ops import fabs from tensorflow.python.ops.numpy_ops.np_math_ops import fix from tensorflow.python.ops.numpy_ops.np_math_ops import float_power from tensorflow.python.ops.numpy_ops.np_math_ops import floor from tensorflow.python.ops.numpy_ops.np_math_ops import floor_divide from tensorflow.python.ops.numpy_ops.np_math_ops import gcd from tensorflow.python.ops.numpy_ops.np_math_ops import geomspace from tensorflow.python.ops.numpy_ops.np_math_ops import greater from tensorflow.python.ops.numpy_ops.np_math_ops import greater_equal from tensorflow.python.ops.numpy_ops.np_math_ops import heaviside from tensorflow.python.ops.numpy_ops.np_math_ops import hypot from tensorflow.python.ops.numpy_ops.np_math_ops import inf from tensorflow.python.ops.numpy_ops.np_math_ops import inner from tensorflow.python.ops.numpy_ops.np_math_ops import isclose from tensorflow.python.ops.numpy_ops.np_math_ops import iscomplex from tensorflow.python.ops.numpy_ops.np_math_ops import iscomplexobj from tensorflow.python.ops.numpy_ops.np_math_ops import isfinite from tensorflow.python.ops.numpy_ops.np_math_ops import isinf from tensorflow.python.ops.numpy_ops.np_math_ops import isnan from tensorflow.python.ops.numpy_ops.np_math_ops import isneginf from tensorflow.python.ops.numpy_ops.np_math_ops import isposinf from tensorflow.python.ops.numpy_ops.np_math_ops import isreal from tensorflow.python.ops.numpy_ops.np_math_ops import isrealobj from tensorflow.python.ops.numpy_ops.np_math_ops import kron from tensorflow.python.ops.numpy_ops.np_math_ops import lcm from tensorflow.python.ops.numpy_ops.np_math_ops import less from tensorflow.python.ops.numpy_ops.np_math_ops import less_equal from tensorflow.python.ops.numpy_ops.np_math_ops import linspace from tensorflow.python.ops.numpy_ops.np_math_ops import log from tensorflow.python.ops.numpy_ops.np_math_ops import log10 from tensorflow.python.ops.numpy_ops.np_math_ops import log1p from tensorflow.python.ops.numpy_ops.np_math_ops import log2 from tensorflow.python.ops.numpy_ops.np_math_ops import logaddexp from tensorflow.python.ops.numpy_ops.np_math_ops import logaddexp2 from tensorflow.python.ops.numpy_ops.np_math_ops import logical_and from tensorflow.python.ops.numpy_ops.np_math_ops import logical_not from tensorflow.python.ops.numpy_ops.np_math_ops import logical_or from tensorflow.python.ops.numpy_ops.np_math_ops import logical_xor from tensorflow.python.ops.numpy_ops.np_math_ops import logspace from tensorflow.python.ops.numpy_ops.np_math_ops import matmul from tensorflow.python.ops.numpy_ops.np_math_ops import maximum from tensorflow.python.ops.numpy_ops.np_math_ops import meshgrid from tensorflow.python.ops.numpy_ops.np_math_ops import minimum from tensorflow.python.ops.numpy_ops.np_math_ops import mod from tensorflow.python.ops.numpy_ops.np_math_ops import multiply from tensorflow.python.ops.numpy_ops.np_math_ops import nanmean from tensorflow.python.ops.numpy_ops.np_math_ops import nanprod from tensorflow.python.ops.numpy_ops.np_math_ops import nansum from tensorflow.python.ops.numpy_ops.np_math_ops import negative from tensorflow.python.ops.numpy_ops.np_math_ops import nextafter from tensorflow.python.ops.numpy_ops.np_math_ops import not_equal from tensorflow.python.ops.numpy_ops.np_math_ops import outer from tensorflow.python.ops.numpy_ops.np_math_ops import pi from tensorflow.python.ops.numpy_ops.np_math_ops import polyval from tensorflow.python.ops.numpy_ops.np_math_ops import positive from tensorflow.python.ops.numpy_ops.np_math_ops import power from tensorflow.python.ops.numpy_ops.np_math_ops import ptp from tensorflow.python.ops.numpy_ops.np_math_ops import rad2deg from tensorflow.python.ops.numpy_ops.np_math_ops import reciprocal from tensorflow.python.ops.numpy_ops.np_math_ops import remainder from tensorflow.python.ops.numpy_ops.np_math_ops import signbit from tensorflow.python.ops.numpy_ops.np_math_ops import sin from tensorflow.python.ops.numpy_ops.np_math_ops import sinc from tensorflow.python.ops.numpy_ops.np_math_ops import sinh from tensorflow.python.ops.numpy_ops.np_math_ops import sort from tensorflow.python.ops.numpy_ops.np_math_ops import sqrt from tensorflow.python.ops.numpy_ops.np_math_ops import square from tensorflow.python.ops.numpy_ops.np_math_ops import subtract from tensorflow.python.ops.numpy_ops.np_math_ops import tan from tensorflow.python.ops.numpy_ops.np_math_ops import tanh from tensorflow.python.ops.numpy_ops.np_math_ops import tensordot from tensorflow.python.ops.numpy_ops.np_math_ops import tile from tensorflow.python.ops.numpy_ops.np_math_ops import trace from tensorflow.python.ops.numpy_ops.np_math_ops import true_divide from tensorflow.python.ops.numpy_ops.np_math_ops import vdot from tensorflow.python.ops.numpy_ops.np_utils import finfo from tensorflow.python.ops.numpy_ops.np_utils import promote_types from tensorflow.python.ops.numpy_ops.np_utils import result_type del _print_function