EVOLUTION-MANAGER
Edit File: test_spherical_voronoi.py
from __future__ import print_function import numpy as np import itertools from numpy.testing import (assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal) import pytest from pytest import raises as assert_raises from pytest import warns as assert_warns from scipy.spatial import SphericalVoronoi, distance from scipy.spatial import _spherical_voronoi as spherical_voronoi from scipy._lib._numpy_compat import suppress_warnings from scipy.spatial.transform import Rotation from scipy.optimize import linear_sum_assignment TOL = 1E-10 class TestSphericalVoronoi(object): def setup_method(self): self.points = np.array([ [-0.78928481, -0.16341094, 0.59188373], [-0.66839141, 0.73309634, 0.12578818], [0.32535778, -0.92476944, -0.19734181], [-0.90177102, -0.03785291, -0.43055335], [0.71781344, 0.68428936, 0.12842096], [-0.96064876, 0.23492353, -0.14820556], [0.73181537, -0.22025898, -0.6449281], [0.79979205, 0.54555747, 0.25039913]] ) # Issue #9386 self.hemisphere_points = np.array([ [0.88610999, -0.42383021, 0.18755541], [0.51980039, -0.72622668, 0.4498915], [0.56540011, -0.81629197, -0.11827989], [0.69659682, -0.69972598, 0.15854467]]) # Issue #8859 phi = np.linspace(0, 2 * np.pi, 10, endpoint=False) # azimuth angle theta = np.linspace(0.001, np.pi * 0.4, 5) # polar angle theta = theta[np.newaxis, :].T phiv, thetav = np.meshgrid(phi, theta) phiv = np.reshape(phiv, (50, 1)) thetav = np.reshape(thetav, (50, 1)) x = np.cos(phiv) * np.sin(thetav) y = np.sin(phiv) * np.sin(thetav) z = np.cos(thetav) self.hemisphere_points2 = np.concatenate([x, y, z], axis=1) def test_constructor(self): center = np.array([1, 2, 3]) radius = 2 s1 = SphericalVoronoi(self.points) # user input checks in SphericalVoronoi now require # the radius / center to match the generators so adjust # accordingly here s2 = SphericalVoronoi(self.points * radius, radius) s3 = SphericalVoronoi(self.points + center, center=center) s4 = SphericalVoronoi(self.points * radius + center, radius, center) assert_array_equal(s1.center, np.array([0, 0, 0])) assert_equal(s1.radius, 1) assert_array_equal(s2.center, np.array([0, 0, 0])) assert_equal(s2.radius, 2) assert_array_equal(s3.center, center) assert_equal(s3.radius, 1) assert_array_equal(s4.center, center) assert_equal(s4.radius, radius) def test_vertices_regions_translation_invariance(self): sv_origin = SphericalVoronoi(self.points) center = np.array([1, 1, 1]) sv_translated = SphericalVoronoi(self.points + center, center=center) assert_array_equal(sv_origin.regions, sv_translated.regions) assert_array_almost_equal(sv_origin.vertices + center, sv_translated.vertices) def test_vertices_regions_scaling_invariance(self): sv_unit = SphericalVoronoi(self.points) sv_scaled = SphericalVoronoi(self.points * 2, 2) assert_array_equal(sv_unit.regions, sv_scaled.regions) assert_array_almost_equal(sv_unit.vertices * 2, sv_scaled.vertices) def test_old_radius_api(self): sv_unit = SphericalVoronoi(self.points, radius=1) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`radius` is `None`") sv = SphericalVoronoi(self.points, None) assert_array_almost_equal(sv_unit.vertices, sv.vertices) def test_old_radius_api_warning(self): with assert_warns(DeprecationWarning): sv = SphericalVoronoi(self.points, None) def test_sort_vertices_of_regions(self): sv = SphericalVoronoi(self.points) unsorted_regions = sv.regions sv.sort_vertices_of_regions() assert_array_equal(sorted(sv.regions), sorted(unsorted_regions)) def test_sort_vertices_of_regions_flattened(self): expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1], [4, 8, 7, 5, 6], [9, 11, 10], [2, 7, 5], [1, 4, 8, 11, 9], [0, 3, 10, 9, 1]]) expected = list(itertools.chain(*sorted(expected))) sv = SphericalVoronoi(self.points) sv.sort_vertices_of_regions() actual = list(itertools.chain(*sorted(sv.regions))) assert_array_equal(actual, expected) def test_sort_vertices_of_regions_dimensionality(self): points = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0.5, 0.5, 0.5, 0.5]]) with pytest.raises(TypeError, match="three-dimensional"): sv = spherical_voronoi.SphericalVoronoi(points) sv.sort_vertices_of_regions() def test_num_vertices(self): # for any n >= 3, a spherical Voronoi diagram has 2n - 4 # vertices; this is a direct consequence of Euler's formula # as explained by Dinis and Mamede (2010) Proceedings of the # 2010 International Symposium on Voronoi Diagrams in Science # and Engineering sv = SphericalVoronoi(self.points) expected = self.points.shape[0] * 2 - 4 actual = sv.vertices.shape[0] assert_equal(actual, expected) def test_voronoi_circles(self): sv = spherical_voronoi.SphericalVoronoi(self.points) for vertex in sv.vertices: distances = distance.cdist(sv.points, np.array([vertex])) closest = np.array(sorted(distances)[0:3]) assert_almost_equal(closest[0], closest[1], 7, str(vertex)) assert_almost_equal(closest[0], closest[2], 7, str(vertex)) def test_duplicate_point_handling(self): # an exception should be raised for degenerate generators # related to Issue# 7046 self.degenerate = np.concatenate((self.points, self.points)) with assert_raises(ValueError): sv = spherical_voronoi.SphericalVoronoi(self.degenerate) def test_incorrect_radius_handling(self): # an exception should be raised if the radius provided # cannot possibly match the input generators with assert_raises(ValueError): sv = spherical_voronoi.SphericalVoronoi(self.points, radius=0.98) def test_incorrect_center_handling(self): # an exception should be raised if the center provided # cannot possibly match the input generators with assert_raises(ValueError): sv = spherical_voronoi.SphericalVoronoi(self.points, center=[0.1, 0, 0]) def test_single_hemisphere_handling(self): # Test solution of Issues #9386, #8859 for points in [self.hemisphere_points, self.hemisphere_points2]: sv = SphericalVoronoi(points) triangles = sv._tri.points[sv._tri.simplices] dots = np.einsum('ij,ij->i', sv.vertices, triangles[:, 0]) circumradii = np.arccos(np.clip(dots, -1, 1)) assert np.max(circumradii) > np.pi / 2 def test_rank_deficient(self): # rank-1 input cannot be triangulated points = np.array([[-1, 0, 0], [1, 0, 0]]) with pytest.raises(ValueError, match="Rank of input points"): sv = spherical_voronoi.SphericalVoronoi(points) @pytest.mark.parametrize("n", [8, 15, 21]) @pytest.mark.parametrize("radius", [0.5, 1, 2]) @pytest.mark.parametrize("center", [(0, 0, 0), (1, 2, 3)]) def test_geodesic_input(self, n, radius, center): U = Rotation.random(random_state=0).as_matrix() thetas = np.linspace(0, 2 * np.pi, n, endpoint=False) points = np.vstack([np.sin(thetas), np.cos(thetas), np.zeros(n)]).T points = radius * points @ U sv = SphericalVoronoi(points + center, radius=radius, center=center) # each region must have 4 vertices region_sizes = np.array([len(region) for region in sv.regions]) assert (region_sizes == 4).all() regions = np.array(sv.regions) # vertices are those between each pair of input points + north and # south poles vertices = sv.vertices - center assert len(vertices) == n + 2 # verify that north and south poles are orthogonal to geodesic on which # input points lie poles = vertices[n:] assert np.abs(np.dot(points, poles.T)).max() < 1E-10 for point, region in zip(points, sv.regions): cosine = np.dot(vertices[region], point) sine = np.linalg.norm(np.cross(vertices[region], point), axis=1) arclengths = radius * np.arctan2(sine, cosine) # test arc lengths to poles assert_almost_equal(arclengths[[1, 3]], radius * np.pi / 2) # test arc lengths to forward and backward neighbors assert_almost_equal(arclengths[[0, 2]], radius * np.pi / n) regions = sv.regions.copy() sv.sort_vertices_of_regions() assert regions == sv.regions @pytest.mark.parametrize("dim", range(2, 7)) def test_higher_dimensions(self, dim): n = 100 rng = np.random.RandomState(seed=0) points = rng.randn(n, dim) points /= np.linalg.norm(points, axis=1)[:, np.newaxis] sv = SphericalVoronoi(points) assert sv.vertices.shape[1] == dim assert len(sv.regions) == n # verify Euler characteristic cell_counts = [] simplices = np.sort(sv._tri.simplices) for i in range(1, dim + 1): cells = [] for indices in itertools.combinations(range(dim), i): cells.append(simplices[:, list(indices)]) cells = np.unique(np.concatenate(cells), axis=0) cell_counts.append(len(cells)) expected_euler = 1 + (-1)**(dim-1) actual_euler = sum([(-1)**i * e for i, e in enumerate(cell_counts)]) assert expected_euler == actual_euler @pytest.mark.parametrize("dim", range(2, 7)) def test_cross_polytope_regions(self, dim): # The hypercube is the dual of the cross-polytope, so the voronoi # vertices of the cross-polytope lie on the points of the hypercube. # generate points of the cross-polytope points = np.concatenate((-np.eye(dim), np.eye(dim))) sv = SphericalVoronoi(points) assert all([len(e) == 2**(dim - 1) for e in sv.regions]) # generate points of the hypercube expected = np.vstack(list(itertools.product([-1, 1], repeat=dim))) expected = expected.astype(np.float) / np.sqrt(dim) # test that Voronoi vertices are correctly placed dist = distance.cdist(sv.vertices, expected) res = linear_sum_assignment(dist) assert dist[res].sum() < TOL @pytest.mark.parametrize("dim", range(2, 4)) def test_hypercube_regions(self, dim): # The cross-polytope is the dual of the hypercube, so the voronoi # vertices of the hypercube lie on the points of the cross-polytope. # generate points of the hypercube points = np.vstack(list(itertools.product([-1, 1], repeat=dim))) points = points.astype(np.float) / np.sqrt(dim) sv = SphericalVoronoi(points) # generate points of the cross-polytope expected = np.concatenate((-np.eye(dim), np.eye(dim))) # test that Voronoi vertices are correctly placed dist = distance.cdist(sv.vertices, expected) res = linear_sum_assignment(dist) assert dist[res].sum() < TOL