EVOLUTION-MANAGER
Edit File: tpu_context.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =================================================================== """TPU system metadata and associated tooling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from contextlib import contextmanager import copy import tensorflow as tf from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.ops import summary_ops_v2 from tensorflow.python.tpu import device_assignment as tpu_device_assignment from tensorflow.python.tpu import tpu_system_metadata as tpu_system_metadata_lib from tensorflow_estimator.python.estimator import model_fn as model_fn_lib from tensorflow_estimator.python.estimator.tpu import _tpu_estimator_embedding from tensorflow_estimator.python.estimator.tpu import tpu_config _DEFAULT_JOB_NAME = 'tpu_worker' _DEFAULT_COORDINATOR_JOB_NAME = 'coordinator' _LOCAL_MASTERS = ('', 'local') # TODO(pgavin): support PF 3D mesh _NUM_CORES_TO_COMPUTATION_SHAPE = { 1: [1, 1, 1, 1], 2: [1, 1, 1, 2], 4: [1, 2, 1, 2], 8: [2, 2, 1, 2], 16: [4, 2, 1, 2], 32: [4, 4, 1, 2], 64: [8, 4, 1, 2], 128: [8, 8, 1, 2], } class TPUContext(object): """A context that holds the current configuration of the TPU computation. TPUContext was designed for getting TPU context information when calling input_fn. It can be called in model_fn as well. User is not expected to construct the instance from constructor. The only legitimate way to get the instance is either in `input_fn`: ``` def input_fn(params): batch_size = params['batch_size'] context = params['context'] # ... ``` or in `model_fn` ``` def model_fn(params): batch_size = params['batch_size'] context = params['context'] # ... ``` Most of the fields of TPUContext are useful for both `input_fn` and `model_fn`. Exceptions are: 1. `input_fn` only: current_input_fn_deployment current_host 2. `model_fn` only: device_assignment """ def __init__(self, internal_ctx, input_device=None, invocation_index=None, call_from_input_fn=True, host_id=None): self._internal_ctx = internal_ctx self._input_device = input_device self._invocation_index = invocation_index self._call_from_input_fn = call_from_input_fn self._host_id = host_id def current_input_fn_deployment(self): """The configuration of the current input_fn invocation. The configuration depends on `TPUConfig.per_host_input_for_training`. See `TPUConfig` for details. Only set in params dict of input_fn Returns: A tuple of 1. Device spec string: String, is the current CPU host where the input_fn is invoked. 2. Current invocation index: Int, 0-based index of the input_fn invocation. See next item for details. 3. Total invocation count: Int, the total number of times to invoke the input_fn on all CPU hosts. Each invocation will be passed with a new `TPUContext` instance with current invocation index set properly. 4. Total number of replicas consumed by current_invocation: Int, the number of replicas fed by the data returned by current input_fn. For example, for per_core input pipeline deployment and non-model-parallelism, total invocation count is equal to the number of cores in the system and num replicas consumed by current invocation is 1. For per-host v2 input pipeline deployment, total invocation count is equal to the number of hosts in the system and num replicas consumed by current invocation is equal to number of replicas per host. Raises: RuntimeError: If this method is not be called from input_fn. """ if not self._call_from_input_fn: raise RuntimeError('This TPUContext instance must not be called from' ' model_fn.') if self._internal_ctx.is_input_sharded_per_core(): total_invocation_count = ( self._internal_ctx.num_hosts * self._internal_ctx.num_of_replicas_per_host) replicas_consumed = 1 elif self._internal_ctx.is_input_broadcast_with_iterators(): total_invocation_count = 1 replicas_consumed = self._internal_ctx.num_replicas elif self._internal_ctx.is_replica_across_hosts(): total_invocation_count = self._internal_ctx.num_replicas replicas_consumed = 1 else: total_invocation_count = self._internal_ctx.num_hosts replicas_consumed = self._internal_ctx.num_of_replicas_per_host return (self._input_device, self._invocation_index, total_invocation_count, replicas_consumed) @property def num_replicas(self): """The total number of replicas. For non-model-parallelism, num_replicas should be the total num of TPU cores in the system. Returns: The number of replicas. """ return self._internal_ctx.num_replicas @property def num_hosts(self): """The number of hosts for the TPU system.""" return self._internal_ctx.num_hosts @property def current_host(self): """The current host index for the TPU system. Returns: The host index (int). Raises: RuntimeError: If this method is not be called from input_fn. """ if not self._call_from_input_fn: raise RuntimeError('This TPUContext instance must not be called from' ' model_fn.') return self._host_id @property def num_of_replicas_per_host(self): """The number of replicas for each host.""" if self._internal_ctx.model_parallelism_enabled: raise ValueError( 'num_of_replicas_per_host is not supported for model_parallelism') return self._internal_ctx.num_of_replicas_per_host @property def device_assignment(self): """Returns device_assignment object. Raises: RuntimeError: If this method is not be called from model_fn. """ if self._call_from_input_fn: raise RuntimeError('This TPUContext instance must not be called from' ' input_fn.') return self._internal_ctx.device_assignment def device_for_replica(self, replica_id): """Returns the tuple of (CPU device and device ordinal) for replica. This should be used for full replicate for non-model-parallelism. Args: replica_id: Int, the replica index. Returns: A tuple of device spec for CPU device and int device ordinal. """ # Note that: For the non-model parallelism, the mapping could be # a random permutation. The order should not matter in most cases # as far as model is replicated to all cores in the system. return self._internal_ctx.device_for_replica(replica_id) @property def tpu_host_placement_function(self): """Returns the TPU host place function. The place function takes host_id as the input and returns the TF device for the correspoding host. """ def _placement_function(host_id): """Return the host device given host_id.""" return self._internal_ctx.tpu_host_placement_function(host_id=host_id) return _placement_function class _InternalTPUContext(object): """A context holds immutable states of TPU computation. This immutable object holds TPUEstimator config, train/eval batch size, and `TPUEstimator.use_tpu`, which is expected to be passed around. It also provides utility functions, based on the current state, to determine other information commonly required by TPU computation, such as TPU device names, TPU hosts, shard batch size, etc. if eval_on_tpu is False, then execution of eval on TPU is disabled. if eval_on_tpu is True, but use_tpu is False, a warning is issued, and TPU execution is disabled for all modes. N.B. As `mode` is not immutable state in Estimator, but essential to distinguish between TPU training and evaluation, a common usage for _InternalTPUContext with `mode` is as follows: ``` with _ctx.with_mode(mode) as ctx: if ctx.is_running_on_cpu(): ... ``` """ def __init__(self, config, train_batch_size, eval_batch_size, predict_batch_size, use_tpu, eval_on_tpu=True, embedding_config_spec=None): self._config = config self._train_batch_size = train_batch_size self._eval_batch_size = eval_batch_size self._predict_batch_size = predict_batch_size self._use_tpu = use_tpu tf.compat.v1.logging.info('_TPUContext: eval_on_tpu %s', eval_on_tpu) if not use_tpu and eval_on_tpu: tf.compat.v1.logging.warn('eval_on_tpu ignored because use_tpu is False.') self._eval_on_tpu = eval_on_tpu self._model_parallelism_enabled = ( use_tpu and config.tpu_config.num_cores_per_replica) self._mode = None num_cores_per_replica = config.tpu_config.num_cores_per_replica if self._model_parallelism_enabled: self._computation_shape = _NUM_CORES_TO_COMPUTATION_SHAPE[ num_cores_per_replica] else: self._computation_shape = None self._lazy_tpu_system_metadata_dict = {} # key by master address self._lazy_device_assignment_dict = {} # key by master address self._lazy_validation_dict = {} # key by ModeKeys self._embedding_config_spec = embedding_config_spec self._lazy_embedding_config_dict = {} # key by master address def _assert_mode(self): if self._mode is None: raise RuntimeError( '`mode` needs to be set via contextmanager `with_mode`.') return self._mode @contextmanager def with_mode(self, mode): # NOTE(xiejw): Shallow copy is enough. It will share he lazy dictionaries, # such as _lazy_tpu_system_metadata_dict between new copy and the original # one. Note that all lazy states stored in properties _lazy_foo are sort of # immutable as they should be same for the process lifetime. new_ctx = copy.copy(self) new_ctx._mode = mode # pylint: disable=protected-access yield new_ctx @property def mode(self): return self._assert_mode() def _get_master_address(self): mode = self._assert_mode() config = self._config master = ( config.master if mode != model_fn_lib.ModeKeys.EVAL else config.evaluation_master) return master def _get_tpu_system_metadata(self): """Gets the (maybe cached) TPU system metadata.""" master = self._get_master_address() tpu_system_metadata = self._lazy_tpu_system_metadata_dict.get(master) if tpu_system_metadata is not None: return tpu_system_metadata cluster_def = None if (self._config.session_config and self._config.session_config.cluster_def.job): cluster_def = self._config.session_config.cluster_def # pylint: disable=protected-access tpu_system_metadata = ( tpu_system_metadata_lib._query_tpu_system_metadata( master, cluster_def=cluster_def, query_topology=self.model_parallelism_enabled)) self._lazy_tpu_system_metadata_dict[master] = tpu_system_metadata return tpu_system_metadata def _get_device_assignment(self): """Gets the (maybe cached) TPU device assignment.""" master = self._get_master_address() device_assignment = self._lazy_device_assignment_dict.get(master) if device_assignment is not None: return device_assignment tpu_system_metadata = self._get_tpu_system_metadata() device_assignment = tpu_device_assignment.device_assignment( tpu_system_metadata.topology, computation_shape=self._computation_shape, num_replicas=self.num_replicas) tf.compat.v1.logging.info( 'num_cores_per_replica: %s', str(self._config.tpu_config.num_cores_per_replica)) tf.compat.v1.logging.info('computation_shape: %s', str(self._computation_shape)) tf.compat.v1.logging.info('num_replicas: %d', self.num_replicas) tf.compat.v1.logging.info( 'device_assignment.topology.device_coordinates: %s', str(device_assignment.topology.device_coordinates)) tf.compat.v1.logging.info('device_assignment.core_assignment: %s', str(device_assignment.core_assignment)) self._lazy_device_assignment_dict[master] = device_assignment return device_assignment @property def tensor_core_embedding_columns(self): if self._embedding_config_spec: return self._embedding_config_spec.tensor_core_feature_columns return None @property def embedding_config(self): """Returns the embedding config based on current mode.""" master = self._get_master_address() if master in self._lazy_embedding_config_dict: embedding_config = self._lazy_embedding_config_dict[master] else: embedding_config = None if self._use_tpu and self._embedding_config_spec: embedding_config = _tpu_estimator_embedding.EmbeddingConfig( self._embedding_config_spec, self._train_batch_size, self._eval_batch_size, self.num_hosts, self.num_cores, self.config) if not embedding_config.has_embedding_tables(): embedding_config = None self._lazy_embedding_config_dict[master] = embedding_config if embedding_config is not None: mode = self._assert_mode() # Dynamically attach tpu_embedding based on mode. With # this, we could keep embedding_config immutable but call site always # accesses the unified API '.tpu_embedding'. embedding_config.tpu_embedding = embedding_config.get_tpu_embedding(mode) return embedding_config @property def allow_per_host_v2_parallel_get_next(self): return (self._config.tpu_config .experimental_allow_per_host_v2_parallel_get_next) @property def feed_hook(self): return (self._config.tpu_config.experimental_feed_hook) @property def model_parallelism_enabled(self): return self._model_parallelism_enabled @property def input_partition_dims(self): return self._config.tpu_config.input_partition_dims @property def device_assignment(self): return (self._get_device_assignment() if self._model_parallelism_enabled else None) @property def num_of_cores_per_host(self): metadata = self._get_tpu_system_metadata() return metadata.num_of_cores_per_host @property def num_cores(self): metadata = self._get_tpu_system_metadata() return metadata.num_cores @property def num_of_replicas_per_host(self): """Return the number of replicas per host.""" if self.model_parallelism_enabled: # There can be fewer replicas. This might return 0! return self.num_replicas // self.num_hosts else: return self.num_of_cores_per_host @property def num_replicas(self): """Compute the total number of replicas.""" num_cores_in_system = self.num_cores if self.model_parallelism_enabled: num_cores_per_replica = self._config.tpu_config.num_cores_per_replica if num_cores_per_replica > num_cores_in_system: raise ValueError( 'The num of cores required by the model parallelism, specified by ' 'TPUConfig.num_cores_per_replica, is larger than the total num of ' 'TPU cores in the system. num_cores_per_replica: {}, num cores ' 'in the system: {}'.format(num_cores_per_replica, num_cores_in_system)) if num_cores_in_system % num_cores_per_replica != 0: raise RuntimeError( 'The num of cores in the system ({}) is not divisible by the num ' 'of cores ({}) required by the model parallelism, specified by ' 'TPUConfig.num_cores_per_replica. This should never happen!'.format( num_cores_in_system, num_cores_per_replica)) return num_cores_in_system // num_cores_per_replica else: return num_cores_in_system @property def num_hosts(self): metadata = self._get_tpu_system_metadata() return metadata.num_hosts @property def config(self): return self._config def is_input_sharded_per_core(self): """Return true if input_fn is invoked per-core (other than per-host).""" mode = self._assert_mode() return (mode == model_fn_lib.ModeKeys.TRAIN and (self._config.tpu_config.per_host_input_for_training is tpu_config.InputPipelineConfig.PER_SHARD_V1)) def is_input_per_host_with_iterators(self): """Return true if input_fn should be run in the per-host v2 config.""" return (self._config.tpu_config.per_host_input_for_training is tpu_config.InputPipelineConfig.PER_HOST_V2) def is_input_broadcast_with_iterators(self): """Return true if input_fn should be run in the full_replicae config.""" return ((self._config.tpu_config.per_host_input_for_training is tpu_config.InputPipelineConfig.BROADCAST) or (self.is_input_slice_broadcast_to_all_cores())) def is_input_slice_broadcast_to_all_cores(self): """Return true if input_fn is invoked once and broadcast to other hosts.""" mode = self._assert_mode() return (mode != model_fn_lib.ModeKeys.TRAIN and self._config.tpu_config.eval_training_input_configuration is tpu_config.InputPipelineConfig.SLICED) def is_replica_across_hosts(self): """Return true if single replica is across multiple hosts.""" # For example, when num_cores_per_replica > num_cores_per_host. num_cores_per_replica = self._config.tpu_config.num_cores_per_replica num_cores_per_host = self._get_tpu_system_metadata().num_of_cores_per_host return (num_cores_per_replica is not None and num_cores_per_replica > num_cores_per_host) def is_running_on_cpu(self, is_export_mode=False): """Determines whether the input_fn and model_fn should be invoked on CPU. This API also validates user provided configuration, such as batch size, according the lazy initialized TPU system metadata. Args: is_export_mode: Indicates whether the current mode is for exporting the model, when mode == PREDICT. Only with this bool, we could tell whether user is calling the Estimator.predict or Estimator.export_savedmodel, which are running on TPU and CPU respectively. Parent class Estimator does not distinguish these two. Returns: bool, whether current input_fn or model_fn should be running on CPU. Raises: ValueError: any configuration is invalid. """ is_running_on_cpu = self._is_running_on_cpu(is_export_mode) if not is_running_on_cpu: self._validate_tpu_configuration() return is_running_on_cpu def _is_running_on_cpu(self, is_export_mode): """Determines whether the input_fn and model_fn should be invoked on CPU.""" mode = self._assert_mode() if not self._use_tpu: return True if mode == model_fn_lib.ModeKeys.EVAL and not self._eval_on_tpu: tf.compat.v1.logging.info('_is_running_on_cpu: eval_on_tpu disabled') return True if is_export_mode: return True return False @property def global_batch_size(self): mode = self._assert_mode() if mode == model_fn_lib.ModeKeys.TRAIN: return self._train_batch_size elif mode == model_fn_lib.ModeKeys.EVAL: return self._eval_batch_size elif mode == model_fn_lib.ModeKeys.PREDICT: return self._predict_batch_size else: return None @property def batch_size_for_input_fn(self): """Returns the shard batch size for `input_fn`.""" global_batch_size = self.global_batch_size if (self.is_running_on_cpu() or self.is_input_broadcast_with_iterators()): return global_batch_size # On TPU if self.is_input_sharded_per_core() or ( self.is_input_per_host_with_iterators()) or ( self.is_replica_across_hosts()): return global_batch_size // self.num_replicas else: return global_batch_size // self.num_hosts @property def batch_size_for_model_fn(self): """Returns the shard batch size for `model_fn`.""" global_batch_size = self.global_batch_size if (self.is_running_on_cpu() or self.is_input_broadcast_with_iterators() and not self.is_input_slice_broadcast_to_all_cores()): return global_batch_size # On TPU. always sharded per shard. return global_batch_size // self.num_replicas @property def master_job(self): """Returns the job name to use to place TPU computations on. Returns: A string containing the job name, or None if no job should be specified. Raises: ValueError: If the user needs to specify a tpu_job_name, because we are unable to infer the job name automatically, or if the user-specified job names are inappropriate. """ run_config = self._config # If the user specifies the tpu_job_name, use that. if run_config.tpu_config.tpu_job_name: return run_config.tpu_config.tpu_job_name # The tpu job is determined by the run_config. Right now, this method is # required as tpu_config is not part of the RunConfig. mode = self._assert_mode() master = ( run_config.evaluation_master if mode == model_fn_lib.ModeKeys.EVAL else run_config.master) cluster_def = ( run_config.session_config.cluster_def if run_config.session_config else None) try: master_job = tpu_system_metadata_lib.master_job(master, cluster_def) except ValueError as e: raise ValueError( str(e) + ' Please specify a tpu_job_name as part of ' 'your TPUConfig.') return master_job @property def tpu_host_placement_function(self): """Returns the TPU host place function.""" master = self.master_job def _placement_function(_sentinal=None, replica_id=None, host_id=None): # pylint: disable=invalid-name """Return the host device given replica_id or host_id.""" assert _sentinal is None if replica_id is not None and host_id is not None: raise RuntimeError( 'replica_id and host_id can have only one non-None value.') if master is None: return '/replica:0/task:0/device:CPU:0' else: if replica_id is not None: if self.model_parallelism_enabled: return self.device_assignment.host_device( replica=replica_id, job=master) else: host_id = replica_id / self.num_of_cores_per_host return '/job:%s/task:%d/device:CPU:0' % (master, host_id) return _placement_function @property def tpu_device_placement_function(self): """Returns a TPU device placement Fn.""" master = self.master_job job_device = '' if master is None else ('/job:%s' % master) def _placement_function(i): if self.model_parallelism_enabled: return self.device_assignment.tpu_device(replica=i, job=master) else: num_of_cores_per_host = self.num_of_cores_per_host host_id = i / num_of_cores_per_host ordinal_id = i % num_of_cores_per_host return '%s/task:%d/device:TPU:%d' % (job_device, host_id, ordinal_id) return _placement_function def tpu_ordinal_function(self, host_id): """Returns the TPU ordinal fn.""" def _tpu_ordinal_function(shard_index_in_host): """Return the TPU ordinal associated with a shard. Required because the enqueue ops are placed on CPU. Args: shard_index_in_host: the shard index Returns: The ordinal of the TPU device the shard's infeed should be placed on. """ if self.model_parallelism_enabled: # We put both enqueue/dequeue ops at tpu.core(0) in each replica. replica = self.device_assignment.lookup_replicas(host_id, 0)[shard_index_in_host] return self.device_assignment.tpu_ordinal(replica=replica) else: return shard_index_in_host % self.num_of_cores_per_host return _tpu_ordinal_function def _validate_tpu_configuration(self): """Validates the configuration based on the TPU system metadata.""" mode = self._assert_mode() if self._lazy_validation_dict.get(mode): return # All following information is obtained from TPU system metadata. num_cores = self.num_cores num_replicas = self.num_replicas num_hosts = self.num_hosts if not num_cores: tpu_system_metadata = self._get_tpu_system_metadata() raise RuntimeError( 'Cannot find any TPU cores in the system. Please double check ' 'Tensorflow master address and TPU worker(s). Available devices ' 'are {}.'.format(tpu_system_metadata.devices)) if self._config.tpu_config.num_shards: user_provided_num_replicas = self._config.tpu_config.num_shards if user_provided_num_replicas != num_replicas: message = ( 'TPUConfig.num_shards is not set correctly. According to TPU ' 'system metadata for Tensorflow master ({}): num_replicas should ' 'be ({}), got ({}). For non-model-parallelism, num_replicas should ' 'be the total num of TPU cores in the system. For ' 'model-parallelism, the total number of TPU cores should be ' 'num_cores_per_replica * num_replicas. Please set it ' 'accordingly or leave it as `None`'.format( self._get_master_address(), num_replicas, user_provided_num_replicas)) raise ValueError(message) if self._config.tpu_config.num_cores_per_replica and ( not self.is_input_per_host_with_iterators()): num_cores_per_replica = self._config.tpu_config.num_cores_per_replica num_cores_per_host = self._get_tpu_system_metadata().num_of_cores_per_host if num_cores_per_replica > num_cores_per_host: raise ValueError( 'Except the PER_HOST_V2 mode, the num of cores required by ' 'model parallelism specified by TPUConfig.num_cores_per_replica ' 'should be less than or equal to the num_cores_per_host. ' 'num_cores_per_replica: {}, num_cores_per_host: {}'.format( num_cores_per_replica, num_cores_per_host)) if mode == model_fn_lib.ModeKeys.TRAIN: if (self._train_batch_size % num_replicas != 0 and not self.is_input_broadcast_with_iterators()): raise ValueError( 'train batch size {} must be divisible by number of replicas {}' .format(self._train_batch_size, num_replicas)) elif mode == model_fn_lib.ModeKeys.EVAL: if self._eval_batch_size is None: raise ValueError( 'eval_batch_size in TPUEstimator constructor cannot be `None` ' 'if .evaluate is running on TPU.') if (self._eval_batch_size % num_replicas != 0 and not self.is_input_broadcast_with_iterators()): raise ValueError( 'eval batch size {} must be divisible by number of replicas {}' .format(self._eval_batch_size, num_replicas)) if num_hosts != 1 and not ( self.is_input_broadcast_with_iterators()) and not ( num_replicas == 1 and self.is_input_per_host_with_iterators()): raise ValueError( 'TPUEstimator.evaluate is only supported under three conditions: ' '1. num_hosts=1; 2. BROADCAST mode; ' '3. PER_HOST_V2 mode with num_replicas=1. ' 'mode: {}; num_hosts: {}; num_replicas=1:{}'.format( self._config.tpu_config.per_host_input_for_training, num_hosts, num_replicas)) else: assert mode == model_fn_lib.ModeKeys.PREDICT if self._predict_batch_size is None: raise ValueError( 'predict_batch_size in TPUEstimator constructor cannot be `None` ' 'if .predict is running on TPU.') if (self._predict_batch_size % num_replicas != 0 and not self.is_input_broadcast_with_iterators()): raise ValueError( 'predict batch size {} must be divisible by number of replicas {}' .format(self._predict_batch_size, num_replicas)) if num_hosts != 1 and not ( self.is_input_broadcast_with_iterators()) and not ( num_replicas == 1 and self.is_input_per_host_with_iterators()): raise ValueError( 'TPUEstimator.predict is only supported under three conditions: ' '1. num_hosts=1; 2. BROADCAST mode; ' '3. PER_HOST_V2 mode with num_replicas=1. ' 'mode: {}; num_hosts: {}; num_replicas=1:{}'.format( self._config.tpu_config.per_host_input_for_training, num_hosts, num_replicas)) # Record the state "validated" into lazy dictionary. self._lazy_validation_dict[mode] = True def device_for_replica(self, replica_id): """Returns the tuple of (CPU device and device ordinal) for replica. This should be used for full replicate for non-model-parallelism. Args: replica_id: Int, the replica index. Returns: A tuple of device spec for CPU device and int device ordinal. """ master = self.master_job if self.model_parallelism_enabled: return (self.device_assignment.host_device( replica=replica_id, job=master), self.device_assignment.tpu_ordinal(replica=replica_id)) job_device = '' if master is None else ('/job:%s' % master) num_of_replicas_per_host = self.num_of_replicas_per_host assert num_of_replicas_per_host > 0, ( 'Got num_of_replicas_per_host: {}'.format(num_of_replicas_per_host)) host_id = replica_id / num_of_replicas_per_host ordinal_id = replica_id % num_of_replicas_per_host host_device = '%s/task:%d/device:CPU:0' % (job_device, host_id) return (host_device, ordinal_id) class _OneCoreTPUContext(_InternalTPUContext): """Special _InternalTPUContext for one core usage.""" def __init__(self, config, train_batch_size, eval_batch_size, predict_batch_size, use_tpu): super(_OneCoreTPUContext, self).__init__(config, train_batch_size, eval_batch_size, predict_batch_size, use_tpu) def _get_tpu_system_metadata(self): """Gets the (maybe cached) TPU system metadata.""" master = self._get_master_address() tpu_system_metadata = self._lazy_tpu_system_metadata_dict.get(master) if tpu_system_metadata is not None: return tpu_system_metadata tpu_system_metadata = ( tpu_system_metadata_lib.TPUSystemMetadata( # pylint: disable=protected-access num_cores=1, num_hosts=1, num_of_cores_per_host=1, topology=None, devices=[])) self._lazy_tpu_system_metadata_dict[master] = tpu_system_metadata return tpu_system_metadata class _TPUEstimatorReplicaContext(tf.distribute.ReplicaContext): """Internal context for storing replica id. This is to set eager.context.Context() so that only summary ops from 0th replica is executed. """ def __init__(self, replica_id_in_sync): """Creates internal replica context for TPUEstimator. Args: replica_id_in_sync: Zero indexed integer id of replica that is running the TPU compuation. """ super(_TPUEstimatorReplicaContext, self).__init__(None, replica_id_in_sync) # Use default strategy and replica context when variables are # accessed/watched for backpropagation. # pylint: disable=protected-access self._thread_context = distribution_strategy_context._DefaultReplicaThreadMode( ) self._strategy = self._thread_context.strategy # pylint: enable=protected-access def __enter__(self): def replica_id_is_zero(): return tf.math.equal(self.replica_id_in_sync_group, tf.constant(0)) if hasattr(summary_ops_v2, '_summary_state'): summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access self._summary_recording_distribution_strategy = ( summary_state.is_recording_distribution_strategy) summary_state.is_recording_distribution_strategy = replica_id_is_zero def __exit__(self, exception_type, exception_value, traceback): if hasattr(summary_ops_v2, '_summary_state'): summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access summary_state.is_recording_distribution_strategy = ( self._summary_recording_distribution_strategy) def _get_tpu_context(config, train_batch_size, eval_batch_size, predict_batch_size, use_tpu, eval_on_tpu, embedding_config_spec): """Returns an instance of `_InternalTPUContext`.""" if (config.tpu_config.num_shards == 1 and config.tpu_config.num_cores_per_replica is None): if embedding_config_spec is not None: raise ValueError('Setting TPUConfig.num_shards==1 is unsupported ' 'when embedding_config_spec is not None.') tf.compat.v1.logging.warn( 'Setting TPUConfig.num_shards==1 is an unsupported behavior. ' 'Please fix as soon as possible (leaving num_shards as None.)') return _OneCoreTPUContext(config, train_batch_size, eval_batch_size, predict_batch_size, use_tpu) return _InternalTPUContext(config, train_batch_size, eval_batch_size, predict_batch_size, use_tpu, eval_on_tpu, embedding_config_spec)