EVOLUTION-MANAGER
Edit File: binary_class_head.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Binary class head.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.framework import ops from tensorflow.python.keras import metrics from tensorflow.python.keras.utils import losses_utils from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import weights_broadcast_ops from tensorflow.python.util.tf_export import estimator_export from tensorflow_estimator.python.estimator import model_fn from tensorflow_estimator.python.estimator.canned import metric_keys from tensorflow_estimator.python.estimator.canned import prediction_keys from tensorflow_estimator.python.estimator.export import export_output from tensorflow_estimator.python.estimator.head import base_head from tensorflow_estimator.python.estimator.mode_keys import ModeKeys @estimator_export('estimator.BinaryClassHead') class BinaryClassHead(base_head.Head): """Creates a `Head` for single label binary classification. Uses `sigmoid_cross_entropy_with_logits` loss. The head expects `logits` with shape `[D0, D1, ... DN, 1]`. In many applications, the shape is `[batch_size, 1]`. `labels` must be a dense `Tensor` with shape matching `logits`, namely `[D0, D1, ... DN, 1]`. If `label_vocabulary` given, `labels` must be a string `Tensor` with values from the vocabulary. If `label_vocabulary` is not given, `labels` must be float `Tensor` with values in the interval `[0, 1]`. If `weight_column` is specified, weights must be of shape `[D0, D1, ... DN]`, or `[D0, D1, ... DN, 1]`. The loss is the weighted sum over the input dimensions. Namely, if the input labels have shape `[batch_size, 1]`, the loss is the weighted sum over `batch_size`. Also supports custom `loss_fn`. `loss_fn` takes `(labels, logits)` or `(labels, logits, features, loss_reduction)` as arguments and returns loss with shape `[D0, D1, ... DN, 1]`. `loss_fn` must support float `labels` with shape `[D0, D1, ... DN, 1]`. Namely, the head applies `label_vocabulary` to the input labels before passing them to `loss_fn`. Usage: >>> head = tf.estimator.BinaryClassHead() >>> logits = np.array(((45,), (-41,),), dtype=np.float32) >>> labels = np.array(((1,), (1,),), dtype=np.int32) >>> features = {'x': np.array(((42,),), dtype=np.float32)} >>> # expected_loss = sum(cross_entropy(labels, logits)) / batch_size >>> # = sum(0, 41) / 2 = 41 / 2 = 20.50 >>> loss = head.loss(labels, logits, features=features) >>> print('{:.2f}'.format(loss.numpy())) 20.50 >>> eval_metrics = head.metrics() >>> updated_metrics = head.update_metrics( ... eval_metrics, features, logits, labels) >>> for k in sorted(updated_metrics): ... print('{} : {:.2f}'.format(k, updated_metrics[k].result().numpy())) accuracy : 0.50 accuracy_baseline : 1.00 auc : 0.00 auc_precision_recall : 1.00 average_loss : 20.50 label/mean : 1.00 precision : 1.00 prediction/mean : 0.50 recall : 0.50 >>> preds = head.predictions(logits) >>> print(preds['logits']) tf.Tensor( [[ 45.] [-41.]], shape=(2, 1), dtype=float32) Usage with a canned estimator: ```python my_head = tf.estimator.BinaryClassHead() my_estimator = tf.estimator.DNNEstimator( head=my_head, hidden_units=..., feature_columns=...) ``` It can also be used with a custom `model_fn`. Example: ```python def _my_model_fn(features, labels, mode): my_head = tf.estimator.BinaryClassHead() logits = tf.keras.Model(...)(features) return my_head.create_estimator_spec( features=features, mode=mode, labels=labels, optimizer=tf.keras.optimizers.Adagrad(lr=0.1), logits=logits) my_estimator = tf.estimator.Estimator(model_fn=_my_model_fn) ``` Args: weight_column: A string or a `NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. thresholds: Iterable of floats in the range `(0, 1)`. For binary classification metrics such as precision and recall, an eval metric is generated for each threshold value. This threshold is applied to the logistic values to determine the binary classification (i.e., above the threshold is `true`, below is `false`. label_vocabulary: A list or tuple of strings representing possible label values. If it is not given, that means labels are already encoded within [0, 1]. If given, labels must be string type and have any value in `label_vocabulary`. Note that errors will be raised if `label_vocabulary` is not provided but labels are strings. loss_reduction: One of `tf.losses.Reduction` except `NONE`. Decides how to reduce training loss over batch. Defaults to `SUM_OVER_BATCH_SIZE`, namely weighted sum of losses divided by `batch size * label_dimension`. loss_fn: Optional loss function. name: Name of the head. If provided, summary and metrics keys will be suffixed by `"/" + name`. Also used as `name_scope` when creating ops. """ def __init__(self, weight_column=None, thresholds=None, label_vocabulary=None, loss_reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, loss_fn=None, name=None): if label_vocabulary is not None and not isinstance(label_vocabulary, (list, tuple)): raise ValueError( 'label_vocabulary should be a list or a tuple. Given type: {}'.format( type(label_vocabulary))) thresholds = tuple(thresholds) if thresholds else tuple() for threshold in thresholds: if (threshold <= 0.0) or (threshold >= 1.0): raise ValueError('thresholds not in (0, 1): {}.'.format((thresholds,))) base_head.validate_loss_reduction(loss_reduction) if loss_fn: base_head.validate_loss_fn_args(loss_fn) self._weight_column = weight_column self._thresholds = thresholds self._label_vocabulary = label_vocabulary self._loss_reduction = loss_reduction self._loss_fn = loss_fn self._name = name # Metric keys. keys = metric_keys.MetricKeys self._loss_mean_key = self._summary_key(keys.LOSS_MEAN) self._accuracy_key = self._summary_key(keys.ACCURACY) self._precision_key = self._summary_key(keys.PRECISION) self._recall_key = self._summary_key(keys.RECALL) self._prediction_mean_key = self._summary_key(keys.PREDICTION_MEAN) self._label_mean_key = self._summary_key(keys.LABEL_MEAN) self._accuracy_baseline_key = self._summary_key(keys.ACCURACY_BASELINE) self._auc_key = self._summary_key(keys.AUC) self._auc_pr_key = self._summary_key(keys.AUC_PR) self._loss_regularization_key = self._summary_key(keys.LOSS_REGULARIZATION) accuracy_keys = [] precision_keys = [] recall_keys = [] for threshold in self._thresholds: accuracy_keys.append( self._summary_key(keys.ACCURACY_AT_THRESHOLD % threshold)) precision_keys.append( self._summary_key(keys.PRECISION_AT_THRESHOLD % threshold)) recall_keys.append( self._summary_key(keys.RECALL_AT_THRESHOLD % threshold)) self._accuracy_keys = tuple(accuracy_keys) self._precision_keys = tuple(precision_keys) self._recall_keys = tuple(recall_keys) @property def name(self): """See `base_head.Head` for details.""" return self._name @property def logits_dimension(self): """See `base_head.Head` for details.""" return 1 @property def loss_reduction(self): """See `base_head.Head` for details.""" return self._loss_reduction # Attributes for lookup tables in Eager execution. Note that for Graph # execution, the lookup tables are created on demand to make sure the lookup # table is in the same graph as its input tensors for `train` and `eval` of # Estimator (as Estimator recreates graphs for `train`, `eval` and # `predict`). _cached_class_id_table = None _cached_class_string_table = None @property def _class_id_table(self): """Creates a lookup table for class_id. In eager execution, this lookup table will be lazily created on the first call of `self._class_id_table`, and cached for later use; In graph execution, it will be created on demand. Returns: A hash table for lookup. """ if self._cached_class_id_table is None or not tf.executing_eagerly(): self._cached_class_id_table = lookup_ops.index_table_from_tensor( vocabulary_list=tuple(self._label_vocabulary), name='class_id_lookup') return self._cached_class_id_table @property def _class_string_table(self): """Creates a lookup table for class_string. In eager execution, this lookup table will be lazily created on the first call of `self._class_string_table` and cached for later use; In graph execution, it will be created on demand. Returns: A hash table for lookup. """ if (self._cached_class_string_table is None or not tf.executing_eagerly()): self._cached_class_string_table = ( lookup_ops.index_to_string_table_from_tensor( vocabulary_list=self._label_vocabulary, name='class_string_lookup')) return self._cached_class_string_table def _processed_labels(self, logits, labels): """Converts labels to integer id space.""" labels = base_head.check_dense_labels_match_logits_and_reshape( labels=labels, logits=logits, expected_labels_dimension=1) if self._label_vocabulary is not None: labels = self._class_id_table.lookup(labels) labels = tf.cast(labels, dtype=tf.dtypes.float32) return base_head.check_label_range(labels, n_classes=2) def _unweighted_loss_and_weights(self, logits, labels, features): """Computes unweighted loss and weights.""" if self._loss_fn: unweighted_loss = base_head.call_loss_fn( loss_fn=self._loss_fn, labels=labels, logits=logits, features=features, expected_loss_dim=1) else: unweighted_loss = tf.compat.v1.nn.sigmoid_cross_entropy_with_logits( labels=labels, logits=logits) weights = base_head.get_weights_and_check_match_logits( features=features, weight_column=self._weight_column, logits=logits) return unweighted_loss, weights def loss(self, labels, logits, features=None, mode=None, regularization_losses=None): """Returns regularized training loss. See `base_head.Head` for details.""" del mode # Unused for this head. with ops.name_scope( 'losses', values=(logits, labels, regularization_losses, features)): logits = base_head.check_logits_final_dim(logits, self.logits_dimension) labels = self._processed_labels(logits, labels) unweighted_loss, weights = self._unweighted_loss_and_weights( logits, labels, features) training_loss = losses_utils.compute_weighted_loss( unweighted_loss, sample_weight=weights, reduction=self._loss_reduction) regularization_loss = tf.math.add_n( regularization_losses) if regularization_losses is not None else None regularized_training_loss = ( training_loss + regularization_loss if regularization_loss is not None else training_loss) return regularized_training_loss def predictions(self, logits, keys=None): """Return predictions based on keys. See `base_head.Head` for details. Args: logits: logits `Tensor` with shape `[D0, D1, ... DN, logits_dimension]`. For many applications, the shape is `[batch_size, logits_dimension]`. keys: a list or tuple of prediction keys. Each key can be either the class variable of prediction_keys.PredictionKeys or its string value, such as: prediction_keys.PredictionKeys.CLASSES or 'classes'. If not specified, it will return the predictions for all valid keys. Returns: A dict of predictions. """ pred_keys = prediction_keys.PredictionKeys valid_keys = [ pred_keys.LOGITS, pred_keys.LOGISTIC, pred_keys.PROBABILITIES, pred_keys.CLASS_IDS, pred_keys.CLASSES, pred_keys.ALL_CLASS_IDS, pred_keys.ALL_CLASSES ] if keys: base_head.check_prediction_keys(keys, valid_keys) else: keys = valid_keys logits = base_head.check_logits_final_dim(logits, self.logits_dimension) predictions = {} with ops.name_scope('predictions', values=(logits,)): if pred_keys.LOGITS in keys: predictions[pred_keys.LOGITS] = logits if pred_keys.LOGISTIC in keys: logistic = tf.math.sigmoid(logits, name=pred_keys.LOGISTIC) predictions[pred_keys.LOGISTIC] = logistic two_class_logits = tf.concat((tf.compat.v1.zeros_like(logits), logits), axis=-1, name='two_class_logits') if pred_keys.PROBABILITIES in keys: probabilities = tf.compat.v1.nn.softmax( two_class_logits, name=pred_keys.PROBABILITIES) predictions[pred_keys.PROBABILITIES] = probabilities if pred_keys.CLASS_IDS in keys or pred_keys.CLASSES in keys: class_ids = tf.compat.v1.math.argmax( two_class_logits, axis=-1, name=pred_keys.CLASS_IDS) class_ids = tf.compat.v1.expand_dims(class_ids, axis=-1) if pred_keys.CLASS_IDS in keys: predictions[pred_keys.CLASS_IDS] = class_ids if pred_keys.CLASSES in keys: if self._label_vocabulary is not None: classes = self._class_string_table.lookup(class_ids) else: classes = tf.strings.as_string(class_ids, name='str_classes') predictions[pred_keys.CLASSES] = classes if pred_keys.ALL_CLASS_IDS in keys: predictions[pred_keys.ALL_CLASS_IDS] = base_head.all_class_ids( logits, n_classes=2) if pred_keys.ALL_CLASSES in keys: predictions[pred_keys.ALL_CLASSES] = base_head.all_classes( logits, n_classes=2, label_vocabulary=self._label_vocabulary) return predictions def metrics(self, regularization_losses=None): """Creates metrics. See `base_head.Head` for details.""" keys = metric_keys.MetricKeys with ops.name_scope('metrics', values=(regularization_losses,)): # Mean metric. eval_metrics = {} eval_metrics[self._loss_mean_key] = metrics.Mean(name=keys.LOSS_MEAN) eval_metrics[self._accuracy_key] = metrics.Accuracy(name=keys.ACCURACY) eval_metrics[self._precision_key] = metrics.Precision(name=keys.PRECISION) eval_metrics[self._recall_key] = metrics.Recall(name=keys.RECALL) eval_metrics[self._prediction_mean_key] = metrics.Mean( name=keys.PREDICTION_MEAN) eval_metrics[self._label_mean_key] = metrics.Mean(name=keys.LABEL_MEAN) eval_metrics[self._accuracy_baseline_key] = ( metrics.Mean(name=keys.ACCURACY_BASELINE)) # The default summation_method is "interpolation" in the AUC metric. eval_metrics[self._auc_key] = metrics.AUC(name=keys.AUC) eval_metrics[self._auc_pr_key] = metrics.AUC(curve='PR', name=keys.AUC_PR) if regularization_losses is not None: eval_metrics[self._loss_regularization_key] = metrics.Mean( name=keys.LOSS_REGULARIZATION) for i, threshold in enumerate(self._thresholds): eval_metrics[self._accuracy_keys[i]] = metrics.BinaryAccuracy( name=self._accuracy_keys[i], threshold=threshold) eval_metrics[self._precision_keys[i]] = metrics.Precision( name=self._precision_keys[i], thresholds=threshold) eval_metrics[self._recall_keys[i]] = metrics.Recall( name=self._recall_keys[i], thresholds=threshold) return eval_metrics def _update_accuracy_baseline(self, eval_metrics): """Update accuracy baseline metric based on labels mean metric. This is the best the model could do by always predicting one class. For example, suppose the labels = [0, 1, 0, 1, 1]. So the label_mean.total = 3, label_mean.count = 5, and label_mean = label_mean.total / label_mean.count = 3 / 5 = 0.6 By always predicting one class, there are two cases: (1) predicted_labels_0 = [0, 0, 0, 0, 0], accuracy_0 = 2 / 5 = 0.4 (2) predicted_labels_1 = [1, 1, 1, 1, 1], accuracy_1 = 3 / 5 = 0.6 So the accuracy_baseline = max(accuracy_0, accuracy_1) = 0.6, = max(label_mean, 1 - label_mean) To update the total and count of accuracy_baseline, accuracy_baseline = max(label_mean, 1 - label_mean) = max(label_mean.total / label_mean.count, 1 - label_mean.total / label_mean.count) = max(label_mean.total / label_mean.count, (label_mean.count - label_mean.total) / label_mean.count) So accuracy_baseline.total = max(label_mean.total, (label_mean.count - label_mean.total)) accuracy_baseline.count = label_mean.count Args: eval_metrics: A `dict` of metrics to be updated. """ label_mean_metric = eval_metrics[self._label_mean_key] accuracy_baseline_metric = eval_metrics[self._accuracy_baseline_key] accuracy_baseline_metric.add_update(tf.no_op()) accuracy_baseline_metric.total = tf.math.maximum( label_mean_metric.total, label_mean_metric.count - label_mean_metric.total) accuracy_baseline_metric.count = label_mean_metric.count def _update_auc(self, auc_metric, labels, predictions, weights=None): predictions = tf.cast(predictions, dtype=tf.dtypes.float32) if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, predictions) auc_metric.update_state( y_true=labels, y_pred=predictions, sample_weight=weights) def update_metrics(self, eval_metrics, features, logits, labels, regularization_losses=None): """Updates eval metrics. See `base_head.Head` for details.""" preds = self.predictions(logits) class_ids = preds[prediction_keys.PredictionKeys.CLASS_IDS] logits = base_head.check_logits_final_dim(logits, self.logits_dimension) labels = self._processed_labels(logits, labels) unweighted_loss, weights = self._unweighted_loss_and_weights( logits, labels, features) # Update metrics. eval_metrics[self._loss_mean_key].update_state( values=unweighted_loss, sample_weight=weights) eval_metrics[self._accuracy_key].update_state( y_true=labels, y_pred=class_ids, sample_weight=weights) eval_metrics[self._precision_key].update_state( y_true=labels, y_pred=class_ids, sample_weight=weights) eval_metrics[self._recall_key].update_state( y_true=labels, y_pred=class_ids, sample_weight=weights) logistic_key = prediction_keys.PredictionKeys.LOGISTIC predictions = self.predictions(logits, [logistic_key]) logistic = predictions[logistic_key] base_head.update_metric_with_broadcast_weights( eval_metrics[self._prediction_mean_key], logistic, weights) base_head.update_metric_with_broadcast_weights( eval_metrics[self._label_mean_key], labels, weights) self._update_accuracy_baseline(eval_metrics) self._update_auc( auc_metric=eval_metrics[self._auc_key], labels=labels, predictions=logistic, weights=weights) self._update_auc( auc_metric=eval_metrics[self._auc_pr_key], labels=labels, predictions=logistic, weights=weights) if regularization_losses is not None: regularization_loss = tf.math.add_n(regularization_losses) eval_metrics[self._loss_regularization_key].update_state( values=regularization_loss) for i in range(len(self._thresholds)): eval_metrics[self._accuracy_keys[i]].update_state( y_true=labels, y_pred=logistic, sample_weight=weights) eval_metrics[self._precision_keys[i]].update_state( y_true=labels, y_pred=logistic, sample_weight=weights) eval_metrics[self._recall_keys[i]].update_state( y_true=labels, y_pred=logistic, sample_weight=weights) return eval_metrics def _create_tpu_estimator_spec(self, features, mode, logits, labels=None, optimizer=None, trainable_variables=None, train_op_fn=None, update_ops=None, regularization_losses=None): """Returns an `EstimatorSpec`. Args: features: Input `dict` mapping string feature names to `Tensor` or `SparseTensor` objects containing the values for that feature in a minibatch. Often to be used to fetch example-weight tensor. mode: Estimator's `ModeKeys`. logits: Logits `Tensor` with shape `[D0, D1, ... DN, 1]`. For many applications, the shape is `[batch_size, 1]`. labels: Labels integer or string `Tensor` with shape matching `logits`, namely `[D0, D1, ... DN, 1]` or `[D0, D1, ... DN]`. `labels` is required argument when `mode` equals `TRAIN` or `EVAL`. optimizer: An `tf.keras.optimizers.Optimizer` instance to optimize the loss in TRAIN mode. Namely, sets `train_op = optimizer.get_updates(loss, trainable_variables)`, which updates variables to minimize `loss`. trainable_variables: A list or tuple of `Variable` objects to update to minimize `loss`. In Tensorflow 1.x, by default these are the list of variables collected in the graph under the key `GraphKeys.TRAINABLE_VARIABLES`. As Tensorflow 2.x doesn't have collections and GraphKeys, trainable_variables need to be passed explicitly here. train_op_fn: Function that takes a scalar loss `Tensor` and returns `train_op`. Used if `optimizer` is `None`. update_ops: A list or tuple of update ops to be run at training time. For example, layers such as BatchNormalization create mean and variance update ops that need to be run at training time. In Tensorflow 1.x, these are thrown into an UPDATE_OPS collection. As Tensorflow 2.x doesn't have collections, update_ops need to be passed explicitly here. regularization_losses: A list of additional scalar losses to be added to the training loss, such as regularization losses. These losses are usually expressed as a batch average, so for best results users need to set `loss_reduction=SUM_OVER_BATCH_SIZE` when creating the head to avoid scaling errors. Returns: `EstimatorSpec`. Raises: ValueError: If both `train_op_fn` and `optimizer` are `None` in TRAIN mode, or if both are set. """ with ops.name_scope(self._name, 'head'): # Predict. pred_keys = prediction_keys.PredictionKeys predictions = self.predictions(logits) if mode == ModeKeys.PREDICT: probabilities = predictions[pred_keys.PROBABILITIES] logistic = predictions[pred_keys.LOGISTIC] classifier_output = base_head.classification_output( scores=probabilities, n_classes=2, label_vocabulary=self._label_vocabulary) return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access mode=ModeKeys.PREDICT, predictions=predictions, export_outputs={ base_head.DEFAULT_SERVING_KEY: classifier_output, base_head.CLASSIFY_SERVING_KEY: classifier_output, base_head.REGRESS_SERVING_KEY: export_output.RegressionOutput(value=logistic), base_head.PREDICT_SERVING_KEY: export_output.PredictOutput(predictions) }) regularized_training_loss = self.loss( logits=logits, labels=labels, features=features, mode=mode, regularization_losses=regularization_losses) # Eval. if mode == ModeKeys.EVAL: eval_metrics = self.metrics(regularization_losses=regularization_losses) return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access mode=ModeKeys.EVAL, predictions=predictions, loss=regularized_training_loss, eval_metrics=base_head.create_eval_metrics_tuple( self.update_metrics, { 'eval_metrics': eval_metrics, 'features': features, 'logits': logits, 'labels': labels, 'regularization_losses': regularization_losses })) # Train. train_op = base_head.create_estimator_spec_train_op( head_name=self._name, optimizer=optimizer, train_op_fn=train_op_fn, update_ops=update_ops, trainable_variables=trainable_variables, regularized_training_loss=regularized_training_loss, loss_reduction=self._loss_reduction) # Create summary. base_head.create_estimator_spec_summary( regularized_training_loss=regularized_training_loss, regularization_losses=regularization_losses, summary_key_fn=self._summary_key) return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access mode=ModeKeys.TRAIN, predictions=predictions, loss=regularized_training_loss, train_op=train_op)