EVOLUTION-MANAGER
Edit File: _2d.py
# -*- coding: utf-8 -*- """ keras_resnet.classifiers ~~~~~~~~~~~~~~~~~~~~~~~~ This module implements popular residual two-dimensional classifiers. """ import keras.backend import keras.layers import keras.models import keras.regularizers import keras_resnet.models class ResNet18(keras.models.Model): """ A :class:`ResNet18 <ResNet18>` object. :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) Usage: >>> import keras_resnet.classifiers >>> shape, classes = (224, 224, 3), 1000 >>> x = keras.layers.Input(shape) >>> model = keras_resnet.classifiers.ResNet18(x) >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) """ def __init__(self, inputs, classes): outputs = keras_resnet.models.ResNet18(inputs) outputs = keras.layers.Flatten()(outputs.output) outputs = keras.layers.Dense(classes, activation="softmax")(outputs) super(ResNet18, self).__init__(inputs, outputs) class ResNet34(keras.models.Model): """ A :class:`ResNet34 <ResNet34>` object. :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) Usage: >>> import keras_resnet.classifiers >>> shape, classes = (224, 224, 3), 1000 >>> x = keras.layers.Input(shape) >>> model = keras_resnet.classifiers.ResNet34(x) >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) """ def __init__(self, inputs, classes): outputs = keras_resnet.models.ResNet34(inputs) outputs = keras.layers.Flatten()(outputs.output) outputs = keras.layers.Dense(classes, activation="softmax")(outputs) super(ResNet34, self).__init__(inputs, outputs) class ResNet50(keras.models.Model): """ A :class:`ResNet50 <ResNet50>` object. :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) Usage: >>> import keras_resnet.classifiers >>> shape, classes = (224, 224, 3), 1000 >>> x = keras.layers.Input(shape) >>> model = keras_resnet.classifiers.ResNet50(x) >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) """ def __init__(self, inputs, classes): outputs = keras_resnet.models.ResNet50(inputs) outputs = keras.layers.Flatten()(outputs.output) outputs = keras.layers.Dense(classes, activation="softmax")(outputs) super(ResNet50, self).__init__(inputs, outputs) class ResNet101(keras.models.Model): """ A :class:`ResNet101 <ResNet101>` object. :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) Usage: >>> import keras_resnet.classifiers >>> shape, classes = (224, 224, 3), 1000 >>> x = keras.layers.Input(shape) >>> model = keras_resnet.classifiers.ResNet101(x) >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) """ def __init__(self, inputs, classes): outputs = keras_resnet.models.ResNet101(inputs) outputs = keras.layers.Flatten()(outputs.output) outputs = keras.layers.Dense(classes, activation="softmax")(outputs) super(ResNet101, self).__init__(inputs, outputs) class ResNet152(keras.models.Model): """ A :class:`ResNet152 <ResNet152>` object. :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) Usage: >>> import keras_resnet.classifiers >>> shape, classes = (224, 224, 3), 1000 >>> x = keras.layers.Input(shape) >>> model = keras_resnet.classifiers.ResNet152(x) >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) """ def __init__(self, inputs, classes): outputs = keras_resnet.models.ResNet152(inputs) outputs = keras.layers.Flatten()(outputs.output) outputs = keras.layers.Dense(classes, activation="softmax")(outputs) super(ResNet152, self).__init__(inputs, outputs) class ResNet200(keras.models.Model): """ A :class:`ResNet200 <ResNet200>` object. :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) Usage: >>> import keras_resnet.classifiers >>> shape, classes = (224, 224, 3), 1000 >>> x = keras.layers.Input(shape) >>> model = keras_resnet.classifiers.ResNet200(x) >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) """ def __init__(self, inputs, classes): outputs = keras_resnet.models.ResNet200(inputs) outputs = keras.layers.Flatten()(outputs.output) outputs = keras.layers.Dense(classes, activation="softmax")(outputs) super(ResNet200, self).__init__(inputs, outputs)