EVOLUTION-MANAGER
Edit File: structure.py
# -*- coding: utf-8 -*- ''' General documentation architecture: Home Index - Getting started Getting started with the sequential model Getting started with the functional api FAQ - Models About Keras models explain when one should use Sequential or functional API explain compilation step explain weight saving, weight loading explain serialization, deserialization Sequential Model (functional API) - Layers About Keras layers explain common layer functions: get_weights, set_weights, get_config explain input_shape explain usage on non-Keras tensors Core Layers Convolutional Layers Pooling Layers Locally-connected Layers Recurrent Layers Embedding Layers Merge Layers Advanced Activations Layers Normalization Layers Noise Layers Layer Wrappers Writing your own Keras layers - Preprocessing Sequence Preprocessing Text Preprocessing Image Preprocessing Losses Metrics Optimizers Activations Callbacks Datasets Applications Backend Initializers Regularizers Constraints Visualization Scikit-learn API Utils Contributing ''' from keras import utils from keras import layers from keras.layers import advanced_activations from keras.layers import noise from keras.layers import wrappers from keras import initializers from keras import optimizers from keras import callbacks from keras import models from keras import losses from keras import metrics from keras import backend from keras import constraints from keras import activations from keras import preprocessing EXCLUDE = { 'Optimizer', 'TFOptimizer', 'Wrapper', 'get_session', 'set_session', 'CallbackList', 'serialize', 'deserialize', 'get', 'set_image_dim_ordering', 'normalize_data_format', 'image_dim_ordering', 'get_variable_shape', 'Constraint' } # For each class to document, it is possible to: # 1) Document only the class: [classA, classB, ...] # 2) Document all its methods: [classA, (classB, "*")] # 3) Choose which methods to document (methods listed as strings): # [classA, (classB, ["method1", "method2", ...]), ...] # 4) Choose which methods to document (methods listed as qualified names): # [classA, (classB, [module.classB.method1, module.classB.method2, ...]), ...] PAGES = [ { 'page': 'models/sequential.md', 'methods': [ models.Sequential.compile, models.Sequential.fit, models.Sequential.evaluate, models.Sequential.predict, models.Sequential.train_on_batch, models.Sequential.test_on_batch, models.Sequential.predict_on_batch, models.Sequential.fit_generator, models.Sequential.evaluate_generator, models.Sequential.predict_generator, models.Sequential.get_layer, ], }, { 'page': 'models/model.md', 'methods': [ models.Model.compile, models.Model.fit, models.Model.evaluate, models.Model.predict, models.Model.train_on_batch, models.Model.test_on_batch, models.Model.predict_on_batch, models.Model.fit_generator, models.Model.evaluate_generator, models.Model.predict_generator, models.Model.get_layer, ] }, { 'page': 'layers/core.md', 'classes': [ layers.Dense, layers.Activation, layers.Dropout, layers.Flatten, layers.Input, layers.Reshape, layers.Permute, layers.RepeatVector, layers.Lambda, layers.ActivityRegularization, layers.Masking, layers.SpatialDropout1D, layers.SpatialDropout2D, layers.SpatialDropout3D, ], }, { 'page': 'layers/convolutional.md', 'classes': [ layers.Conv1D, layers.Conv2D, layers.SeparableConv1D, layers.SeparableConv2D, layers.DepthwiseConv2D, layers.Conv2DTranspose, layers.Conv3D, layers.Conv3DTranspose, layers.Cropping1D, layers.Cropping2D, layers.Cropping3D, layers.UpSampling1D, layers.UpSampling2D, layers.UpSampling3D, layers.ZeroPadding1D, layers.ZeroPadding2D, layers.ZeroPadding3D, ], }, { 'page': 'layers/pooling.md', 'classes': [ layers.MaxPooling1D, layers.MaxPooling2D, layers.MaxPooling3D, layers.AveragePooling1D, layers.AveragePooling2D, layers.AveragePooling3D, layers.GlobalMaxPooling1D, layers.GlobalAveragePooling1D, layers.GlobalMaxPooling2D, layers.GlobalAveragePooling2D, layers.GlobalMaxPooling3D, layers.GlobalAveragePooling3D, ], }, { 'page': 'layers/local.md', 'classes': [ layers.LocallyConnected1D, layers.LocallyConnected2D, ], }, { 'page': 'layers/recurrent.md', 'classes': [ layers.RNN, layers.SimpleRNN, layers.GRU, layers.LSTM, layers.ConvLSTM2D, layers.ConvLSTM2DCell, layers.SimpleRNNCell, layers.GRUCell, layers.LSTMCell, layers.CuDNNGRU, layers.CuDNNLSTM, ], }, { 'page': 'layers/embeddings.md', 'classes': [ layers.Embedding, ], }, { 'page': 'layers/normalization.md', 'classes': [ layers.BatchNormalization, ], }, { 'page': 'layers/advanced-activations.md', 'all_module_classes': [advanced_activations], }, { 'page': 'layers/noise.md', 'all_module_classes': [noise], }, { 'page': 'layers/merge.md', 'classes': [ layers.Add, layers.Subtract, layers.Multiply, layers.Average, layers.Maximum, layers.Minimum, layers.Concatenate, layers.Dot, ], 'functions': [ layers.add, layers.subtract, layers.multiply, layers.average, layers.maximum, layers.minimum, layers.concatenate, layers.dot, ] }, { 'page': 'preprocessing/sequence.md', 'functions': [ preprocessing.sequence.pad_sequences, preprocessing.sequence.skipgrams, preprocessing.sequence.make_sampling_table, ], 'classes': [ preprocessing.sequence.TimeseriesGenerator, ] }, { 'page': 'preprocessing/image.md', 'classes': [ (preprocessing.image.ImageDataGenerator, '*') ] }, { 'page': 'preprocessing/text.md', 'functions': [ preprocessing.text.hashing_trick, preprocessing.text.one_hot, preprocessing.text.text_to_word_sequence, ], 'classes': [ preprocessing.text.Tokenizer, ] }, { 'page': 'layers/wrappers.md', 'all_module_classes': [wrappers], }, { 'page': 'metrics.md', 'all_module_functions': [metrics], }, { 'page': 'losses.md', 'all_module_functions': [losses], }, { 'page': 'initializers.md', 'all_module_functions': [initializers], 'all_module_classes': [initializers], }, { 'page': 'optimizers.md', 'all_module_classes': [optimizers], }, { 'page': 'callbacks.md', 'all_module_classes': [callbacks], }, { 'page': 'activations.md', 'all_module_functions': [activations], }, { 'page': 'backend.md', 'all_module_functions': [backend], }, { 'page': 'constraints.md', 'all_module_classes': [constraints], }, { 'page': 'utils.md', 'functions': [utils.to_categorical, utils.normalize, utils.get_file, utils.print_summary, utils.plot_model, utils.multi_gpu_model], 'classes': [utils.CustomObjectScope, utils.HDF5Matrix, utils.Sequence], }, ] ROOT = 'http://keras.io/' template_np_implementation = """# Numpy implementation ```python {{code}} ``` """ template_hidden_np_implementation = """# Numpy implementation <details> <summary>Show the Numpy implementation</summary> ```python {{code}} ``` </details> """